Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,609 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- lmms-lab/LLaVA-OneVision-Data
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
- zh
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
library_name: transformers
|
11 |
+
tags:
|
12 |
+
- multimodal
|
13 |
+
|
14 |
+
model-index:
|
15 |
+
- name: llava-onevision-qwen-0.5b-ov
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
type: multimodal
|
19 |
+
dataset:
|
20 |
+
type: ai2d
|
21 |
+
name: AI2D
|
22 |
+
metrics:
|
23 |
+
- name: accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 57.1
|
26 |
+
verified: true
|
27 |
+
- task:
|
28 |
+
type: multimodal
|
29 |
+
dataset:
|
30 |
+
type: chartqa
|
31 |
+
name: ChartQA
|
32 |
+
metrics:
|
33 |
+
- name: accuracy
|
34 |
+
type: accuracy
|
35 |
+
value: 61.4
|
36 |
+
verified: true
|
37 |
+
- task:
|
38 |
+
type: multimodal
|
39 |
+
dataset:
|
40 |
+
type: docvqa
|
41 |
+
name: DocVQA
|
42 |
+
metrics:
|
43 |
+
- name: accuracy
|
44 |
+
type: accuracy
|
45 |
+
value: 73.7
|
46 |
+
verified: true
|
47 |
+
- task:
|
48 |
+
type: multimodal
|
49 |
+
dataset:
|
50 |
+
type: infovqa
|
51 |
+
name: InfoVQA
|
52 |
+
metrics:
|
53 |
+
- name: accuracy
|
54 |
+
type: accuracy
|
55 |
+
value: 46.3
|
56 |
+
verified: true
|
57 |
+
- task:
|
58 |
+
type: multimodal
|
59 |
+
dataset:
|
60 |
+
type: mathverse
|
61 |
+
name: MathVerse
|
62 |
+
metrics:
|
63 |
+
- name: accuracy
|
64 |
+
type: accuracy
|
65 |
+
value: 17.9
|
66 |
+
verified: true
|
67 |
+
- task:
|
68 |
+
type: multimodal
|
69 |
+
dataset:
|
70 |
+
type: mathvista
|
71 |
+
name: MathVista
|
72 |
+
metrics:
|
73 |
+
- name: accuracy
|
74 |
+
type: accuracy
|
75 |
+
value: 34.8
|
76 |
+
verified: true
|
77 |
+
- task:
|
78 |
+
type: multimodal
|
79 |
+
dataset:
|
80 |
+
type: mmbench
|
81 |
+
name: MMBench
|
82 |
+
metrics:
|
83 |
+
- name: accuracy
|
84 |
+
type: accuracy
|
85 |
+
value: 52.1
|
86 |
+
verified: true
|
87 |
+
- task:
|
88 |
+
type: multimodal
|
89 |
+
dataset:
|
90 |
+
type: mme-perception
|
91 |
+
name: MME-Perception
|
92 |
+
metrics:
|
93 |
+
- name: score
|
94 |
+
type: score
|
95 |
+
value: 1238
|
96 |
+
verified: true
|
97 |
+
- task:
|
98 |
+
type: multimodal
|
99 |
+
dataset:
|
100 |
+
type: mme-cognition
|
101 |
+
name: MME-Cognition
|
102 |
+
metrics:
|
103 |
+
- name: score
|
104 |
+
type: score
|
105 |
+
value: 240
|
106 |
+
verified: true
|
107 |
+
- task:
|
108 |
+
type: multimodal
|
109 |
+
dataset:
|
110 |
+
type: mmmu
|
111 |
+
name: MMMU
|
112 |
+
metrics:
|
113 |
+
- name: accuracy
|
114 |
+
type: accuracy
|
115 |
+
value: 31.4
|
116 |
+
verified: true
|
117 |
+
- task:
|
118 |
+
type: multimodal
|
119 |
+
dataset:
|
120 |
+
type: mmvet
|
121 |
+
name: MMVet
|
122 |
+
metrics:
|
123 |
+
- name: accuracy
|
124 |
+
type: accuracy
|
125 |
+
value: 29.1
|
126 |
+
verified: true
|
127 |
+
- task:
|
128 |
+
type: multimodal
|
129 |
+
dataset:
|
130 |
+
type: mmstar
|
131 |
+
name: MMStar
|
132 |
+
metrics:
|
133 |
+
- name: accuracy
|
134 |
+
type: accuracy
|
135 |
+
value: 37.5
|
136 |
+
verified: true
|
137 |
+
- task:
|
138 |
+
type: multimodal
|
139 |
+
dataset:
|
140 |
+
type: seed-bench
|
141 |
+
name: Seed-Bench
|
142 |
+
metrics:
|
143 |
+
- name: accuracy
|
144 |
+
type: accuracy
|
145 |
+
value: 65.5
|
146 |
+
verified: true
|
147 |
+
- task:
|
148 |
+
type: multimodal
|
149 |
+
dataset:
|
150 |
+
type: science-qa
|
151 |
+
name: Science-QA
|
152 |
+
metrics:
|
153 |
+
- name: accuracy
|
154 |
+
type: accuracy
|
155 |
+
value: 67.2
|
156 |
+
verified: true
|
157 |
+
- task:
|
158 |
+
type: multimodal
|
159 |
+
dataset:
|
160 |
+
type: imagedc
|
161 |
+
name: ImageDC
|
162 |
+
metrics:
|
163 |
+
- name: accuracy
|
164 |
+
type: accuracy
|
165 |
+
value: 83.3
|
166 |
+
verified: true
|
167 |
+
- task:
|
168 |
+
type: multimodal
|
169 |
+
dataset:
|
170 |
+
type: mmlbench
|
171 |
+
name: MMLBench
|
172 |
+
metrics:
|
173 |
+
- name: accuracy
|
174 |
+
type: accuracy
|
175 |
+
value: 49.9
|
176 |
+
verified: true
|
177 |
+
- task:
|
178 |
+
type: multimodal
|
179 |
+
dataset:
|
180 |
+
type: realworldqa
|
181 |
+
name: RealWorldQA
|
182 |
+
metrics:
|
183 |
+
- name: accuracy
|
184 |
+
type: accuracy
|
185 |
+
value: 55.6
|
186 |
+
verified: true
|
187 |
+
- task:
|
188 |
+
type: multimodal
|
189 |
+
dataset:
|
190 |
+
type: vibe-eval
|
191 |
+
name: Vibe-Eval
|
192 |
+
metrics:
|
193 |
+
- name: accuracy
|
194 |
+
type: accuracy
|
195 |
+
value: 33.8
|
196 |
+
verified: true
|
197 |
+
- task:
|
198 |
+
type: multimodal
|
199 |
+
dataset:
|
200 |
+
type: llava-w
|
201 |
+
name: LLaVA-W
|
202 |
+
metrics:
|
203 |
+
- name: accuracy
|
204 |
+
type: accuracy
|
205 |
+
value: 74.2
|
206 |
+
verified: true
|
207 |
+
- task:
|
208 |
+
type: multimodal
|
209 |
+
dataset:
|
210 |
+
type: l-wilder
|
211 |
+
name: L-Wilder
|
212 |
+
metrics:
|
213 |
+
- name: accuracy
|
214 |
+
type: accuracy
|
215 |
+
value: 55.0
|
216 |
+
verified: true
|
217 |
+
- task:
|
218 |
+
type: multimodal
|
219 |
+
dataset:
|
220 |
+
type: actnet-qa
|
221 |
+
name: ActNet-QA
|
222 |
+
metrics:
|
223 |
+
- name: accuracy
|
224 |
+
type: accuracy
|
225 |
+
value: 50.5
|
226 |
+
verified: true
|
227 |
+
- task:
|
228 |
+
type: multimodal
|
229 |
+
dataset:
|
230 |
+
type: egoschema
|
231 |
+
name: EgoSchema
|
232 |
+
metrics:
|
233 |
+
- name: accuracy
|
234 |
+
type: accuracy
|
235 |
+
value: 26.8
|
236 |
+
verified: true
|
237 |
+
- task:
|
238 |
+
type: multimodal
|
239 |
+
dataset:
|
240 |
+
type: mlvu
|
241 |
+
name: MLVU
|
242 |
+
metrics:
|
243 |
+
- name: accuracy
|
244 |
+
type: accuracy
|
245 |
+
value: 50.3
|
246 |
+
verified: true
|
247 |
+
- task:
|
248 |
+
type: multimodal
|
249 |
+
dataset:
|
250 |
+
type: mvbench
|
251 |
+
name: MVBench
|
252 |
+
metrics:
|
253 |
+
- name: accuracy
|
254 |
+
type: accuracy
|
255 |
+
value: 45.5
|
256 |
+
verified: true
|
257 |
+
- task:
|
258 |
+
type: multimodal
|
259 |
+
dataset:
|
260 |
+
type: nextqa
|
261 |
+
name: NextQA
|
262 |
+
metrics:
|
263 |
+
- name: accuracy
|
264 |
+
type: accuracy
|
265 |
+
value: 57.2
|
266 |
+
verified: true
|
267 |
+
- task:
|
268 |
+
type: multimodal
|
269 |
+
dataset:
|
270 |
+
type: percepTest
|
271 |
+
name: PercepTest
|
272 |
+
metrics:
|
273 |
+
- name: accuracy
|
274 |
+
type: accuracy
|
275 |
+
value: 49.2
|
276 |
+
verified: true
|
277 |
+
- task:
|
278 |
+
type: multimodal
|
279 |
+
dataset:
|
280 |
+
type: seedbench
|
281 |
+
name: SeedBench
|
282 |
+
metrics:
|
283 |
+
- name: accuracy
|
284 |
+
type: accuracy
|
285 |
+
value: 44.2
|
286 |
+
verified: true
|
287 |
+
- task:
|
288 |
+
type: multimodal
|
289 |
+
dataset:
|
290 |
+
type: videochatgpt
|
291 |
+
name: VideoChatGPT
|
292 |
+
metrics:
|
293 |
+
- name: score
|
294 |
+
type: score
|
295 |
+
value: 3.12
|
296 |
+
verified: true
|
297 |
+
- task:
|
298 |
+
type: multimodal
|
299 |
+
dataset:
|
300 |
+
type: videodc
|
301 |
+
name: VideoDC
|
302 |
+
metrics:
|
303 |
+
- name: score
|
304 |
+
type: score
|
305 |
+
value: 3.55
|
306 |
+
verified: true
|
307 |
+
- task:
|
308 |
+
type: multimodal
|
309 |
+
dataset:
|
310 |
+
type: videomme
|
311 |
+
name: VideoMME
|
312 |
+
metrics:
|
313 |
+
- name: accuracy
|
314 |
+
type: accuracy
|
315 |
+
value: 44.0
|
316 |
+
verified: true
|
317 |
+
- task:
|
318 |
+
type: multimodal
|
319 |
+
dataset:
|
320 |
+
type: iei
|
321 |
+
name: Image Edit Instruction
|
322 |
+
metrics:
|
323 |
+
- name: accuracy
|
324 |
+
type: accuracy
|
325 |
+
value: 17.1
|
326 |
+
verified: true
|
327 |
+
- task:
|
328 |
+
type: multimodal
|
329 |
+
dataset:
|
330 |
+
type: mi-vqa
|
331 |
+
name: MI-VQA
|
332 |
+
metrics:
|
333 |
+
- name: accuracy
|
334 |
+
type: accuracy
|
335 |
+
value: 48.7
|
336 |
+
verified: true
|
337 |
+
- task:
|
338 |
+
type: multimodal
|
339 |
+
dataset:
|
340 |
+
type: nlvr2
|
341 |
+
name: NLVR2
|
342 |
+
metrics:
|
343 |
+
- name: accuracy
|
344 |
+
type: accuracy
|
345 |
+
value: 63.4
|
346 |
+
verified: true
|
347 |
+
- task:
|
348 |
+
type: multimodal
|
349 |
+
dataset:
|
350 |
+
type: puzzle
|
351 |
+
name: Puzzle
|
352 |
+
metrics:
|
353 |
+
- name: accuracy
|
354 |
+
type: accuracy
|
355 |
+
value: 35.4
|
356 |
+
verified: true
|
357 |
+
- task:
|
358 |
+
type: multimodal
|
359 |
+
dataset:
|
360 |
+
type: q-bench
|
361 |
+
name: Q-Bench
|
362 |
+
metrics:
|
363 |
+
- name: accuracy
|
364 |
+
type: accuracy
|
365 |
+
value: 48.8
|
366 |
+
verified: true
|
367 |
+
- task:
|
368 |
+
type: multimodal
|
369 |
+
dataset:
|
370 |
+
type: spot-diff
|
371 |
+
name: Spot-Diff
|
372 |
+
metrics:
|
373 |
+
- name: accuracy
|
374 |
+
type: accuracy
|
375 |
+
value: 36.4
|
376 |
+
verified: true
|
377 |
+
- task:
|
378 |
+
type: multimodal
|
379 |
+
dataset:
|
380 |
+
type: tr-vqa
|
381 |
+
name: TR-VQA
|
382 |
+
metrics:
|
383 |
+
- name: accuracy
|
384 |
+
type: accuracy
|
385 |
+
value: 65.0
|
386 |
+
verified: true
|
387 |
+
- task:
|
388 |
+
type: multimodal
|
389 |
+
dataset:
|
390 |
+
type: vst
|
391 |
+
name: VST
|
392 |
+
metrics:
|
393 |
+
- name: accuracy
|
394 |
+
type: accuracy
|
395 |
+
value: 29.8
|
396 |
+
verified: true
|
397 |
+
- task:
|
398 |
+
type: multimodal
|
399 |
+
dataset:
|
400 |
+
type: scannet-chat
|
401 |
+
name: ScanNet-Chat
|
402 |
+
metrics:
|
403 |
+
- name: accuracy
|
404 |
+
type: accuracy
|
405 |
+
value: 60.00
|
406 |
+
verified: true
|
407 |
+
- task:
|
408 |
+
type: multimodal
|
409 |
+
dataset:
|
410 |
+
type: scannet-td
|
411 |
+
name: ScanNet-TD
|
412 |
+
metrics:
|
413 |
+
- name: accuracy
|
414 |
+
type: accuracy
|
415 |
+
value: 48.00
|
416 |
+
verified: true
|
417 |
+
- task:
|
418 |
+
type: multimodal
|
419 |
+
dataset:
|
420 |
+
type: scanqa
|
421 |
+
name: ScanQA
|
422 |
+
metrics:
|
423 |
+
- name: accuracy
|
424 |
+
type: accuracy
|
425 |
+
value: 29.40
|
426 |
+
verified: true
|
427 |
+
- task:
|
428 |
+
type: multimodal
|
429 |
+
dataset:
|
430 |
+
type: alfred
|
431 |
+
name: ALFRED
|
432 |
+
metrics:
|
433 |
+
- name: accuracy
|
434 |
+
type: accuracy
|
435 |
+
value: 62.20
|
436 |
+
verified: true
|
437 |
+
- task:
|
438 |
+
type: multimodal
|
439 |
+
dataset:
|
440 |
+
type: nuscenesvqa
|
441 |
+
name: nuScenesVQA
|
442 |
+
metrics:
|
443 |
+
- name: accuracy
|
444 |
+
type: accuracy
|
445 |
+
value: 70.50
|
446 |
+
verified: true
|
447 |
+
- task:
|
448 |
+
type: multimodal
|
449 |
+
dataset:
|
450 |
+
type: blink
|
451 |
+
name: BLINK
|
452 |
+
metrics:
|
453 |
+
- name: accuracy
|
454 |
+
type: accuracy
|
455 |
+
value: 52.1
|
456 |
+
verified: true
|
457 |
+
- task:
|
458 |
+
type: multimodal
|
459 |
+
dataset:
|
460 |
+
type: mantis
|
461 |
+
name: Mantis
|
462 |
+
metrics:
|
463 |
+
- name: accuracy
|
464 |
+
type: accuracy
|
465 |
+
value: 39.6
|
466 |
+
verified: true
|
467 |
+
- task:
|
468 |
+
type: multimodal
|
469 |
+
dataset:
|
470 |
+
type: mathverse-mv
|
471 |
+
name: MathVerse-mv
|
472 |
+
metrics:
|
473 |
+
- name: accuracy
|
474 |
+
type: accuracy
|
475 |
+
value: 60.0
|
476 |
+
verified: true
|
477 |
+
- task:
|
478 |
+
type: multimodal
|
479 |
+
dataset:
|
480 |
+
type: muirbench
|
481 |
+
name: MuirBench
|
482 |
+
metrics:
|
483 |
+
- name: accuracy
|
484 |
+
type: accuracy
|
485 |
+
value: 25.5
|
486 |
+
verified: true
|
487 |
+
- task:
|
488 |
+
type: multimodal
|
489 |
+
dataset:
|
490 |
+
type: sciverse-mv
|
491 |
+
name: SciVerse-mv
|
492 |
+
metrics:
|
493 |
+
- name: accuracy
|
494 |
+
type: accuracy
|
495 |
+
value: 29.1
|
496 |
+
verified: true
|
497 |
+
---
|
498 |
+
|
499 |
+
|
500 |
+
# LLaVA-OneVision
|
501 |
+
|
502 |
+
![banner](https://i.postimg.cc/pL17YtG4/WX20240508-220230-2x.png)
|
503 |
+
|
504 |
+
Play with the model on the [LLaVA OneVision Chat](https://llava-onevision.lmms-lab.com/).
|
505 |
+
|
506 |
+
## Table of Contents
|
507 |
+
|
508 |
+
1. [Model Summary](##model-summary)
|
509 |
+
2. [Use](##use)
|
510 |
+
3. [Limitations](##limitations)
|
511 |
+
4. [Training](##training)
|
512 |
+
5. [License](##license)
|
513 |
+
6. [Citation](##citation)
|
514 |
+
|
515 |
+
## Model Summary
|
516 |
+
|
517 |
+
The LLaVA-OneVision models are 0.5/7/72B parameter models trained on [LLaVA-OneVision](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), based on Qwen2 language model with a context window of 32K tokens.
|
518 |
+
|
519 |
+
- **Repository:** [LLaVA-VL/LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT?tab=readme-ov-file)
|
520 |
+
- **Project Website:** [llava-onevision.lmms-lab.com](llava-onevision.lmms-lab.com)
|
521 |
+
- **Paper:** [LLaVA-OneVision]()
|
522 |
+
- **Point of Contact:** [Bo Li](mailto:[email protected])
|
523 |
+
- **Languages:** English, Chinese
|
524 |
+
|
525 |
+
|
526 |
+
## Use
|
527 |
+
|
528 |
+
### Intended use
|
529 |
+
|
530 |
+
The model was trained on [LLaVA-OneVision Dataset](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data) and have the ability to interact with images, multi-image and videos.
|
531 |
+
|
532 |
+
**Feel free to share your generations in the Community tab!**
|
533 |
+
|
534 |
+
### Generation
|
535 |
+
```python
|
536 |
+
# pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git
|
537 |
+
from llava.model.builder import load_pretrained_model
|
538 |
+
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
|
539 |
+
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
|
540 |
+
from llava.conversation import conv_templates, SeparatorStyle
|
541 |
+
|
542 |
+
from PIL import Image
|
543 |
+
import requests
|
544 |
+
import copy
|
545 |
+
import torch
|
546 |
+
|
547 |
+
import sys
|
548 |
+
import warnings
|
549 |
+
|
550 |
+
warnings.filterwarnings("ignore")
|
551 |
+
pretrained = "lmms-lab/llava-onevision-qwen2-0.5b-si"
|
552 |
+
model_name = "llava_qwen"
|
553 |
+
device = "cuda"
|
554 |
+
device_map = "auto"
|
555 |
+
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map) # Add any other thing you want to pass in llava_model_args
|
556 |
+
|
557 |
+
model.eval()
|
558 |
+
|
559 |
+
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
|
560 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
561 |
+
image_tensor = process_images([image], image_processor, model.config)
|
562 |
+
image_tensor = [_image.to(dtype=torch.float16, device=device) for _image in image_tensor]
|
563 |
+
|
564 |
+
conv_template = "qwen_1_5" # Make sure you use correct chat template for different models
|
565 |
+
question = DEFAULT_IMAGE_TOKEN + "\nWhat is shown in this image?"
|
566 |
+
conv = copy.deepcopy(conv_templates[conv_template])
|
567 |
+
conv.append_message(conv.roles[0], question)
|
568 |
+
conv.append_message(conv.roles[1], None)
|
569 |
+
prompt_question = conv.get_prompt()
|
570 |
+
|
571 |
+
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
|
572 |
+
image_sizes = [image.size]
|
573 |
+
|
574 |
+
|
575 |
+
cont = model.generate(
|
576 |
+
input_ids,
|
577 |
+
images=image_tensor,
|
578 |
+
image_sizes=image_sizes,
|
579 |
+
do_sample=False,
|
580 |
+
temperature=0,
|
581 |
+
max_new_tokens=4096,
|
582 |
+
)
|
583 |
+
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)
|
584 |
+
print(text_outputs)
|
585 |
+
```
|
586 |
+
|
587 |
+
# Training
|
588 |
+
|
589 |
+
## Model
|
590 |
+
|
591 |
+
- **Architecture:** SO400M + Qwen2
|
592 |
+
- **Pretraining Stage:** LCS-558K, 1 epoch, projector
|
593 |
+
- **Mid Stage:** A mixture of 4.7M high-quality synthetic data, 1 epoch, full model
|
594 |
+
- **Final-Image Stage:** A mixture of 3.6M single-image data, 1 epoch, full model
|
595 |
+
- **OneVision Stage:** A mixture of 1.6M single-image/multi-image/video data, 1 epoch, full model
|
596 |
+
- **Precision:** bfloat16
|
597 |
+
|
598 |
+
## Hardware & Software
|
599 |
+
|
600 |
+
- **GPUs:** 256 * Nvidia Tesla A100 (for whole model series training)
|
601 |
+
- **Orchestration:** [Huggingface Trainer](https://huggingface.co/docs/transformers/main_classes/trainer)
|
602 |
+
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
|
603 |
+
|
604 |
+
# Citation
|
605 |
+
```
|
606 |
+
@article{li2024llavaonevision,
|
607 |
+
title={LLaVA-OneVision},
|
608 |
+
}
|
609 |
+
```
|