luodian commited on
Commit
40142f4
1 Parent(s): 37b2b31

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +124 -0
README.md ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - lmms-lab/LLaVA-OneVision-Data
5
+ language:
6
+ - en
7
+ - zh
8
+ metrics:
9
+ - accuracy
10
+ library_name: transformers
11
+ tags:
12
+ - multimodal
13
+
14
+ # LLaVA-OneVision
15
+
16
+ ![banner](https://i.postimg.cc/pL17YtG4/WX20240508-220230-2x.png)
17
+
18
+ Play with the model on the [LLaVA OneVision Chat](https://llava-onevision.lmms-lab.com/).
19
+
20
+ ## Table of Contents
21
+
22
+ 1. [Model Summary](##model-summary)
23
+ 2. [Use](##use)
24
+ 3. [Limitations](##limitations)
25
+ 4. [Training](##training)
26
+ 5. [License](##license)
27
+ 6. [Citation](##citation)
28
+
29
+ ## Model Summary
30
+
31
+ The LLaVA-OneVision models are 0.5/7/72B parameter models trained on [LLaVA-OneVision](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), based on Qwen2 language model with a context window of 32K tokens.
32
+
33
+ - **Repository:** [LLaVA-VL/LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT?tab=readme-ov-file)
34
+ - **Project Website:** [llava-onevision.lmms-lab.com](llava-onevision.lmms-lab.com)
35
+ - **Paper:** [LLaVA-OneVision]()
36
+ - **Point of Contact:** [Bo Li](mailto:[email protected])
37
+ - **Languages:** English, Chinese
38
+
39
+ ## Use
40
+
41
+ ### Intended use
42
+
43
+ The model was trained on [LLaVA-OneVision Dataset](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data) and have the ability to interact with images, multi-image and videos.
44
+
45
+ **Feel free to share your generations in the Community tab!**
46
+
47
+ ### Generation
48
+
49
+ ```python
50
+ # pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git
51
+ from llava.model.builder import load_pretrained_model
52
+ from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
53
+ from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
54
+ from llava.conversation import conv_templates, SeparatorStyle
55
+
56
+ from PIL import Image
57
+ import requests
58
+ import copy
59
+ import torch
60
+
61
+ import sys
62
+ import warnings
63
+
64
+ warnings.filterwarnings("ignore")
65
+ pretrained = "lmms-lab/llava-onevision-qwen2-0.5b-si"
66
+ model_name = "llava_qwen"
67
+ device = "cuda"
68
+ device_map = "auto"
69
+ tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map) # Add any other thing you want to pass in llava_model_args
70
+
71
+ model.eval()
72
+
73
+ url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
74
+ image = Image.open(requests.get(url, stream=True).raw)
75
+ image_tensor = process_images([image], image_processor, model.config)
76
+ image_tensor = [_image.to(dtype=torch.float16, device=device) for _image in image_tensor]
77
+
78
+ conv_template = "qwen_1_5" # Make sure you use correct chat template for different models
79
+ question = DEFAULT_IMAGE_TOKEN + "\nWhat is shown in this image?"
80
+ conv = copy.deepcopy(conv_templates[conv_template])
81
+ conv.append_message(conv.roles[0], question)
82
+ conv.append_message(conv.roles[1], None)
83
+ prompt_question = conv.get_prompt()
84
+
85
+ input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
86
+ image_sizes = [image.size]
87
+
88
+
89
+ cont = model.generate(
90
+ input_ids,
91
+ images=image_tensor,
92
+ image_sizes=image_sizes,
93
+ do_sample=False,
94
+ temperature=0,
95
+ max_new_tokens=4096,
96
+ )
97
+ text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)
98
+ print(text_outputs)
99
+ ```
100
+
101
+ # Training
102
+
103
+ ## Model
104
+
105
+ - **Architecture:** SO400M + Qwen2
106
+ - **Pretraining Stage:** LCS-558K, 1 epoch, projector
107
+ - **Mid Stage:** A mixture of 4.7M high-quality synthetic data, 1 epoch, full model
108
+ - **Final-Image Stage:** A mixture of 3.6M single-image data, 1 epoch, full model
109
+ - **OneVision Stage:** A mixture of 1.6M single-image/multi-image/video data, 1 epoch, full model
110
+ - **Precision:** bfloat16
111
+
112
+ ## Hardware & Software
113
+
114
+ - **GPUs:** 256 \* Nvidia Tesla A100 (for whole model series training)
115
+ - **Orchestration:** [Huggingface Trainer](https://huggingface.co/docs/transformers/main_classes/trainer)
116
+ - **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
117
+
118
+ # Citation
119
+
120
+ ```
121
+ @article{li2024llavaonevision,
122
+ title={LLaVA-OneVision},
123
+ }
124
+ ```