asahi417 commited on
Commit
5fe4ba9
·
1 Parent(s): fd3fc3c

model update

Browse files
README.md ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: cc-by-4.0
4
+ metrics:
5
+ - bleu4
6
+ - meteor
7
+ - rouge-l
8
+ - bertscore
9
+ - moverscore
10
+ language: en
11
+ datasets:
12
+ - lmqg/qg_dequad
13
+ pipeline_tag: text2text-generation
14
+ tags:
15
+ - question generation
16
+ - answer extraction
17
+ widget:
18
+ - text: "generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records."
19
+ example_title: "Question Generation Example 1"
20
+ - text: "generate question: Beyonce further expanded her acting career, starring as blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac Records."
21
+ example_title: "Question Generation Example 2"
22
+ - text: "generate question: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, <hl> Cadillac Records <hl> ."
23
+ example_title: "Question Generation Example 3"
24
+ - text: "<hl> Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl> Her performance in the film received praise from critics, and she garnered several nominations for her portrayal of James, including a Satellite Award nomination for Best Supporting Actress, and a NAACP Image Award nomination for Outstanding Supporting Actress."
25
+ example_title: "Answer Extraction Example 1"
26
+ - text: "Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl> Her performance in the film received praise from critics, and she garnered several nominations for her portrayal of James, including a Satellite Award nomination for Best Supporting Actress, and a NAACP Image Award nomination for Outstanding Supporting Actress. <hl>"
27
+ example_title: "Answer Extraction Example 2"
28
+ model-index:
29
+ - name: lmqg/mt5-base-dequad-multitask
30
+ results:
31
+ - task:
32
+ name: Text2text Generation
33
+ type: text2text-generation
34
+ dataset:
35
+ name: lmqg/qg_dequad
36
+ type: default
37
+ args: default
38
+ metrics:
39
+ - name: BLEU4
40
+ type: bleu4
41
+ value: 0.0037638715919786907
42
+ - name: ROUGE-L
43
+ type: rouge-l
44
+ value: 0.08578655213486944
45
+ - name: METEOR
46
+ type: meteor
47
+ value: 0.1055901831758648
48
+ - name: BERTScore
49
+ type: bertscore
50
+ value: 0.7786051149573353
51
+ - name: MoverScore
52
+ type: moverscore
53
+ value: 0.537714157008381
54
+ ---
55
+
56
+ # Model Card of `lmqg/mt5-base-dequad-multitask`
57
+ This model is fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) for question generation task on the
58
+ [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
59
+ This model is fine-tuned on the answer extraction task as well as the question generation.
60
+
61
+ Please cite our paper if you use the model ([https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)).
62
+
63
+ ```
64
+
65
+ @inproceedings{ushio-etal-2022-generative,
66
+ title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
67
+ author = "Ushio, Asahi and
68
+ Alva-Manchego, Fernando and
69
+ Camacho-Collados, Jose",
70
+ booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
71
+ month = dec,
72
+ year = "2022",
73
+ address = "Abu Dhabi, U.A.E.",
74
+ publisher = "Association for Computational Linguistics",
75
+ }
76
+
77
+ ```
78
+
79
+ ### Overview
80
+ - **Language model:** [google/mt5-base](https://huggingface.co/google/mt5-base)
81
+ - **Language:** en
82
+ - **Training data:** [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) (default)
83
+ - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
84
+ - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
85
+ - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
86
+
87
+ ### Usage
88
+ - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
89
+ ```python
90
+
91
+ from lmqg import TransformersQG
92
+ # initialize model
93
+ model = TransformersQG(language='en', model='lmqg/mt5-base-dequad-multitask')
94
+ # model prediction
95
+ question_answer = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes")
96
+
97
+ ```
98
+
99
+ - With `transformers`
100
+ ```python
101
+
102
+ from transformers import pipeline
103
+ # initialize model
104
+ pipe = pipeline("text2text-generation", 'lmqg/mt5-base-dequad-multitask')
105
+ # answer extraction
106
+ answer = pipe('extract answers: <hl> Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl> Her performance in the film received praise from critics, and she garnered several nominations for her portrayal of James, including a Satellite Award nomination for Best Supporting Actress, and a NAACP Image Award nomination for Outstanding Supporting Actress.')
107
+ # question generation
108
+ question = pipe('generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.')
109
+
110
+ ```
111
+
112
+ ## Evaluation Metrics
113
+
114
+
115
+ ### Metrics
116
+
117
+ | Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link |
118
+ |:--------|:-----|------:|--------:|-------:|----------:|-----------:|-----:|
119
+ | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | default | 0.004 | 0.086 | 0.106 | 0.779 | 0.538 | [link](https://huggingface.co/lmqg/mt5-base-dequad-multitask/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_dequad.default.json) |
120
+
121
+
122
+
123
+
124
+ ## Training hyperparameters
125
+
126
+ The following hyperparameters were used during fine-tuning:
127
+ - dataset_path: lmqg/qg_dequad
128
+ - dataset_name: default
129
+ - input_types: ['paragraph_answer', 'paragraph_sentence']
130
+ - output_types: ['question', 'answer']
131
+ - prefix_types: ['qg', 'ae']
132
+ - model: google/mt5-base
133
+ - max_length: 512
134
+ - max_length_output: 32
135
+ - epoch: 8
136
+ - batch: 32
137
+ - lr: 0.0001
138
+ - fp16: False
139
+ - random_seed: 1
140
+ - gradient_accumulation_steps: 2
141
+ - label_smoothing: 0.15
142
+
143
+ The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-base-dequad-multitask/raw/main/trainer_config.json).
144
+
145
+ ## Citation
146
+ ```
147
+
148
+ @inproceedings{ushio-etal-2022-generative,
149
+ title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
150
+ author = "Ushio, Asahi and
151
+ Alva-Manchego, Fernando and
152
+ Camacho-Collados, Jose",
153
+ booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
154
+ month = dec,
155
+ year = "2022",
156
+ address = "Abu Dhabi, U.A.E.",
157
+ publisher = "Association for Computational Linguistics",
158
+ }
159
+
160
+ ```
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "lmqg_output/mt5_base_dequad_answer/best_model",
3
  "add_prefix": true,
4
  "architectures": [
5
  "MT5ForConditionalGeneration"
 
1
  {
2
+ "_name_or_path": "lmqg_output/mt5_base_dequad_answer/model_mntyya/epoch_5",
3
  "add_prefix": true,
4
  "architectures": [
5
  "MT5ForConditionalGeneration"
eval/metric.first.answer.paragraph_answer.question.lmqg_qg_dequad.default.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"validation": {"Bleu_1": 0.0952063597848291, "Bleu_2": 0.03818700965134984, "Bleu_3": 0.017108348075766118, "Bleu_4": 0.006107565577034717}, "test": {"Bleu_1": 0.08029642136859996, "Bleu_2": 0.031216356903100213, "Bleu_3": 0.011293038632361377, "Bleu_4": 0.0037405916540954034}}
eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_dequad.default.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"validation": {"Bleu_1": 0.09601003521975703, "Bleu_2": 0.03840685869062143, "Bleu_3": 0.01715111846800755, "Bleu_4": 0.006140345879834443, "METEOR": 0.11249452928869386, "ROUGE_L": 0.09916299920547067, "BERTScore": 0.7929441278332354, "MoverScore": 0.5458778771227091}, "test": {"Bleu_1": 0.08190559867232479, "Bleu_2": 0.031672449692541, "Bleu_3": 0.011237859034650867, "Bleu_4": 0.0037638715919786907, "METEOR": 0.1055901831758648, "ROUGE_L": 0.08578655213486944, "BERTScore": 0.7786051149573353, "MoverScore": 0.537714157008381}}
eval/samples.test.hyp.paragraph_answer.question.lmqg_qg_dequad.default.txt ADDED
The diff for this file is too large to render. See raw diff
 
eval/samples.validation.hyp.paragraph_answer.question.lmqg_qg_dequad.default.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:967eac356c21cd60dacb3b85173ba5ece2d3d8b566fcfecd3b10c980ff03796d
3
- size 2329628621
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebf4b412aefde9950fb88c69434abe7cbb14e59c73dd99f4b7effd8b0d521916
3
+ size 2329632589
tokenizer_config.json CHANGED
@@ -2,7 +2,7 @@
2
  "additional_special_tokens": null,
3
  "eos_token": "</s>",
4
  "extra_ids": 0,
5
- "name_or_path": "lmqg_output/mt5_base_dequad_answer/best_model",
6
  "pad_token": "<pad>",
7
  "sp_model_kwargs": {},
8
  "special_tokens_map_file": "/home/patrick/.cache/torch/transformers/685ac0ca8568ec593a48b61b0a3c272beee9bc194a3c7241d15dcadb5f875e53.f76030f3ec1b96a8199b2593390c610e76ca8028ef3d24680000619ffb646276",
 
2
  "additional_special_tokens": null,
3
  "eos_token": "</s>",
4
  "extra_ids": 0,
5
+ "name_or_path": "lmqg_output/mt5_base_dequad_answer/model_mntyya/epoch_5",
6
  "pad_token": "<pad>",
7
  "sp_model_kwargs": {},
8
  "special_tokens_map_file": "/home/patrick/.cache/torch/transformers/685ac0ca8568ec593a48b61b0a3c272beee9bc194a3c7241d15dcadb5f875e53.f76030f3ec1b96a8199b2593390c610e76ca8028ef3d24680000619ffb646276",
trainer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"dataset_path": "lmqg/qg_dequad", "dataset_name": "default", "input_types": ["paragraph_answer", "paragraph_sentence"], "output_types": ["question", "answer"], "prefix_types": ["qg", "ae"], "model": "google/mt5-base", "max_length": 512, "max_length_output": 32, "epoch": 8, "batch": 32, "lr": 0.0001, "fp16": false, "random_seed": 1, "gradient_accumulation_steps": 2, "label_smoothing": 0.15}