bartowski commited on
Commit
6c637fe
1 Parent(s): b93bc14

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +1 -1780
README.md CHANGED
@@ -1,1785 +1,6 @@
1
  ---
2
  quantized_by: bartowski
3
  pipeline_tag: text-generation
4
- language:
5
- - en
6
- tags:
7
- - language
8
- - granite
9
- - embeddings
10
- license: apache-2.0
11
- base_model: ibm-granite/granite-embedding-125m-english
12
- model-index:
13
- - name: ibm-granite/granite-embedding-125m-english
14
- results:
15
- - task:
16
- type: Retrieval
17
- dataset:
18
- name: MTEB ArguaAna
19
- type: mteb/arguana
20
- config: default
21
- split: test
22
- metrics:
23
- - type: map_at_1
24
- value: 0.33642
25
- - type: map_at_10
26
- value: 0.49716
27
- - type: map_at_100
28
- value: 0.50519
29
- - type: map_at_1000
30
- value: 0.50521
31
- - type: map_at_3
32
- value: 0.45057
33
- - type: map_at_5
34
- value: 0.47774
35
- - type: mrr_at_1
36
- value: 0.34922
37
- - type: mrr_at_10
38
- value: 0.50197
39
- - type: mrr_at_100
40
- value: 0.50992
41
- - type: mrr_at_1000
42
- value: 0.50994
43
- - type: mrr_at_3
44
- value: 0.45484
45
- - type: mrr_at_5
46
- value: 0.48272
47
- - type: ndcg_at_1
48
- value: 0.33642
49
- - type: ndcg_at_10
50
- value: 0.58401
51
- - type: ndcg_at_100
52
- value: 0.6157
53
- - type: ndcg_at_1000
54
- value: 0.61608
55
- - type: ndcg_at_3
56
- value: 0.48825
57
- - type: ndcg_at_5
58
- value: 0.53689
59
- - type: precision_at_1
60
- value: 0.33642
61
- - type: precision_at_10
62
- value: 0.08606
63
- - type: precision_at_100
64
- value: 0.00994
65
- - type: precision_at_1000
66
- value: 0.001
67
- - type: precision_at_3
68
- value: 0.19915
69
- - type: precision_at_5
70
- value: 0.14296
71
- - type: recall_at_1
72
- value: 0.33642
73
- - type: recall_at_10
74
- value: 0.8606
75
- - type: recall_at_100
76
- value: 0.9936
77
- - type: recall_at_1000
78
- value: 0.99644
79
- - type: recall_at_3
80
- value: 0.59744
81
- - type: recall_at_5
82
- value: 0.71479
83
- - task:
84
- type: Retrieval
85
- dataset:
86
- name: MTEB ClimateFEVER
87
- type: mteb/climate-fever
88
- config: default
89
- split: test
90
- metrics:
91
- - type: map_at_1
92
- value: 0.1457
93
- - type: map_at_10
94
- value: 0.24102
95
- - type: map_at_100
96
- value: 0.25826
97
- - type: map_at_1000
98
- value: 0.26021
99
- - type: map_at_3
100
- value: 0.20346
101
- - type: map_at_5
102
- value: 0.22228
103
- - type: mrr_at_1
104
- value: 0.32573
105
- - type: mrr_at_10
106
- value: 0.44411
107
- - type: mrr_at_100
108
- value: 0.45176
109
- - type: mrr_at_1000
110
- value: 0.45209
111
- - type: mrr_at_3
112
- value: 0.4126
113
- - type: mrr_at_5
114
- value: 0.43312
115
- - type: ndcg_at_1
116
- value: 0.32573
117
- - type: ndcg_at_10
118
- value: 0.3315
119
- - type: ndcg_at_100
120
- value: 0.39898
121
- - type: ndcg_at_1000
122
- value: 0.43151
123
- - type: ndcg_at_3
124
- value: 0.27683
125
- - type: ndcg_at_5
126
- value: 0.29538
127
- - type: precision_at_1
128
- value: 0.32573
129
- - type: precision_at_10
130
- value: 0.10176
131
- - type: precision_at_100
132
- value: 0.01754
133
- - type: precision_at_1000
134
- value: 0.00236
135
- - type: precision_at_3
136
- value: 0.20347
137
- - type: precision_at_5
138
- value: 0.15505
139
- - type: recall_at_1
140
- value: 0.1457
141
- - type: recall_at_10
142
- value: 0.38825
143
- - type: recall_at_100
144
- value: 0.62237
145
- - type: recall_at_1000
146
- value: 0.8022
147
- - type: recall_at_3
148
- value: 0.25245
149
- - type: recall_at_5
150
- value: 0.30821
151
- - task:
152
- type: Retrieval
153
- dataset:
154
- name: MTEB CQADupstackAndroidRetrieval
155
- type: mteb/cqadupstack-android
156
- config: default
157
- split: test
158
- metrics:
159
- - type: map_at_1
160
- value: 0.36964
161
- - type: map_at_10
162
- value: 0.5043
163
- - type: map_at_100
164
- value: 0.52066
165
- - type: map_at_1000
166
- value: 0.52175
167
- - type: map_at_3
168
- value: 0.46001
169
- - type: map_at_5
170
- value: 0.48312
171
- - type: mrr_at_1
172
- value: 0.45923
173
- - type: mrr_at_10
174
- value: 0.56733
175
- - type: mrr_at_100
176
- value: 0.57292
177
- - type: mrr_at_1000
178
- value: 0.57321
179
- - type: mrr_at_3
180
- value: 0.54053
181
- - type: mrr_at_5
182
- value: 0.55556
183
- - type: ndcg_at_1
184
- value: 0.45923
185
- - type: ndcg_at_10
186
- value: 0.57667
187
- - type: ndcg_at_100
188
- value: 0.62373
189
- - type: ndcg_at_1000
190
- value: 0.6368
191
- - type: ndcg_at_3
192
- value: 0.51843
193
- - type: ndcg_at_5
194
- value: 0.54257
195
- - type: precision_at_1
196
- value: 0.45923
197
- - type: precision_at_10
198
- value: 0.11316
199
- - type: precision_at_100
200
- value: 0.01705
201
- - type: precision_at_1000
202
- value: 0.00216
203
- - type: precision_at_3
204
- value: 0.2537
205
- - type: precision_at_5
206
- value: 0.1814
207
- - type: recall_at_1
208
- value: 0.36964
209
- - type: recall_at_10
210
- value: 0.71234
211
- - type: recall_at_100
212
- value: 0.90421
213
- - type: recall_at_1000
214
- value: 0.98296
215
- - type: recall_at_3
216
- value: 0.53655
217
- - type: recall_at_5
218
- value: 0.60996
219
- - task:
220
- type: Retrieval
221
- dataset:
222
- name: MTEB CQADupstackEnglishRetrieval
223
- type: mteb/cqadupstack-english
224
- config: default
225
- split: test
226
- metrics:
227
- - type: map_at_1
228
- value: 0.36198
229
- - type: map_at_10
230
- value: 0.49199
231
- - type: map_at_100
232
- value: 0.50602
233
- - type: map_at_1000
234
- value: 0.50736
235
- - type: map_at_3
236
- value: 0.45678
237
- - type: map_at_5
238
- value: 0.47605
239
- - type: mrr_at_1
240
- value: 0.45478
241
- - type: mrr_at_10
242
- value: 0.55075
243
- - type: mrr_at_100
244
- value: 0.55656
245
- - type: mrr_at_1000
246
- value: 0.55688
247
- - type: mrr_at_3
248
- value: 0.52887
249
- - type: mrr_at_5
250
- value: 0.54282
251
- - type: ndcg_at_1
252
- value: 0.45478
253
- - type: ndcg_at_10
254
- value: 0.55505
255
- - type: ndcg_at_100
256
- value: 0.59606
257
- - type: ndcg_at_1000
258
- value: 0.61255
259
- - type: ndcg_at_3
260
- value: 0.51124
261
- - type: ndcg_at_5
262
- value: 0.53166
263
- - type: precision_at_1
264
- value: 0.45478
265
- - type: precision_at_10
266
- value: 0.10752
267
- - type: precision_at_100
268
- value: 0.01666
269
- - type: precision_at_1000
270
- value: 0.00211
271
- - type: precision_at_3
272
- value: 0.25053
273
- - type: precision_at_5
274
- value: 0.17694
275
- - type: recall_at_1
276
- value: 0.36198
277
- - type: recall_at_10
278
- value: 0.66465
279
- - type: recall_at_100
280
- value: 0.83632
281
- - type: recall_at_1000
282
- value: 0.93276
283
- - type: recall_at_3
284
- value: 0.53207
285
- - type: recall_at_5
286
- value: 0.59169
287
- - task:
288
- type: Retrieval
289
- dataset:
290
- name: MTEB CQADupstackGamingRetrieval
291
- type: mteb/cqadupstack-gaming
292
- config: default
293
- split: test
294
- metrics:
295
- - type: map_at_1
296
- value: 0.44157
297
- - type: map_at_10
298
- value: 0.57753
299
- - type: map_at_100
300
- value: 0.58698
301
- - type: map_at_1000
302
- value: 0.5874
303
- - type: map_at_3
304
- value: 0.54223
305
- - type: map_at_5
306
- value: 0.56307
307
- - type: mrr_at_1
308
- value: 0.50094
309
- - type: mrr_at_10
310
- value: 0.607
311
- - type: mrr_at_100
312
- value: 0.6126
313
- - type: mrr_at_1000
314
- value: 0.6128
315
- - type: mrr_at_3
316
- value: 0.58265
317
- - type: mrr_at_5
318
- value: 0.59817
319
- - type: ndcg_at_1
320
- value: 0.50094
321
- - type: ndcg_at_10
322
- value: 0.63641
323
- - type: ndcg_at_100
324
- value: 0.67055
325
- - type: ndcg_at_1000
326
- value: 0.67855
327
- - type: ndcg_at_3
328
- value: 0.58022
329
- - type: ndcg_at_5
330
- value: 0.6097
331
- - type: precision_at_1
332
- value: 0.50094
333
- - type: precision_at_10
334
- value: 0.10182
335
- - type: precision_at_100
336
- value: 0.01278
337
- - type: precision_at_1000
338
- value: 0.00138
339
- - type: precision_at_3
340
- value: 0.2581
341
- - type: precision_at_5
342
- value: 0.17755
343
- - type: recall_at_1
344
- value: 0.44157
345
- - type: recall_at_10
346
- value: 0.7778
347
- - type: recall_at_100
348
- value: 0.92244
349
- - type: recall_at_1000
350
- value: 0.9781
351
- - type: recall_at_3
352
- value: 0.63087
353
- - type: recall_at_5
354
- value: 0.70172
355
- - task:
356
- type: Retrieval
357
- dataset:
358
- name: MTEB CQADupstackGisRetrieval
359
- type: mteb/cqadupstack-gis
360
- config: default
361
- split: test
362
- metrics:
363
- - type: map_at_1
364
- value: 0.29532
365
- - type: map_at_10
366
- value: 0.40214
367
- - type: map_at_100
368
- value: 0.41289
369
- - type: map_at_1000
370
- value: 0.41359
371
- - type: map_at_3
372
- value: 0.37086
373
- - type: map_at_5
374
- value: 0.38889
375
- - type: mrr_at_1
376
- value: 0.3209
377
- - type: mrr_at_10
378
- value: 0.42423
379
- - type: mrr_at_100
380
- value: 0.43342
381
- - type: mrr_at_1000
382
- value: 0.43395
383
- - type: mrr_at_3
384
- value: 0.39736
385
- - type: mrr_at_5
386
- value: 0.41307
387
- - type: ndcg_at_1
388
- value: 0.3209
389
- - type: ndcg_at_10
390
- value: 0.46075
391
- - type: ndcg_at_100
392
- value: 0.5103
393
- - type: ndcg_at_1000
394
- value: 0.52668
395
- - type: ndcg_at_3
396
- value: 0.40149
397
- - type: ndcg_at_5
398
- value: 0.43111
399
- - type: precision_at_1
400
- value: 0.3209
401
- - type: precision_at_10
402
- value: 0.07141
403
- - type: precision_at_100
404
- value: 0.01018
405
- - type: precision_at_1000
406
- value: 0.00118
407
- - type: precision_at_3
408
- value: 0.17175
409
- - type: precision_at_5
410
- value: 0.12068
411
- - type: recall_at_1
412
- value: 0.29532
413
- - type: recall_at_10
414
- value: 0.62025
415
- - type: recall_at_100
416
- value: 0.83829
417
- - type: recall_at_1000
418
- value: 0.95995
419
- - type: recall_at_3
420
- value: 0.4603
421
- - type: recall_at_5
422
- value: 0.53089
423
- - task:
424
- type: Retrieval
425
- dataset:
426
- name: MTEB CQADupstackMathematicaRetrieval
427
- type: mteb/cqadupstack-mathematica
428
- config: default
429
- split: test
430
- metrics:
431
- - type: map_at_1
432
- value: 0.18944
433
- - type: map_at_10
434
- value: 0.29611
435
- - type: map_at_100
436
- value: 0.31063
437
- - type: map_at_1000
438
- value: 0.31174
439
- - type: map_at_3
440
- value: 0.26098
441
- - type: map_at_5
442
- value: 0.28151
443
- - type: mrr_at_1
444
- value: 0.23756
445
- - type: mrr_at_10
446
- value: 0.34491
447
- - type: mrr_at_100
448
- value: 0.35457
449
- - type: mrr_at_1000
450
- value: 0.35512
451
- - type: mrr_at_3
452
- value: 0.3126
453
- - type: mrr_at_5
454
- value: 0.3317
455
- - type: ndcg_at_1
456
- value: 0.23756
457
- - type: ndcg_at_10
458
- value: 0.36015
459
- - type: ndcg_at_100
460
- value: 0.42175
461
- - type: ndcg_at_1000
462
- value: 0.44607
463
- - type: ndcg_at_3
464
- value: 0.29725
465
- - type: ndcg_at_5
466
- value: 0.32879
467
- - type: precision_at_1
468
- value: 0.23756
469
- - type: precision_at_10
470
- value: 0.06928
471
- - type: precision_at_100
472
- value: 0.01153
473
- - type: precision_at_1000
474
- value: 0.00149
475
- - type: precision_at_3
476
- value: 0.14635
477
- - type: precision_at_5
478
- value: 0.1107
479
- - type: recall_at_1
480
- value: 0.18944
481
- - type: recall_at_10
482
- value: 0.50691
483
- - type: recall_at_100
484
- value: 0.76503
485
- - type: recall_at_1000
486
- value: 0.93624
487
- - type: recall_at_3
488
- value: 0.33611
489
- - type: recall_at_5
490
- value: 0.41427
491
- - task:
492
- type: Retrieval
493
- dataset:
494
- name: MTEB CQADupstackPhysicsRetrieval
495
- type: mteb/cqadupstack-physics
496
- config: default
497
- split: test
498
- metrics:
499
- - type: map_at_1
500
- value: 0.33824
501
- - type: map_at_10
502
- value: 0.46868
503
- - type: map_at_100
504
- value: 0.48306
505
- - type: map_at_1000
506
- value: 0.48406
507
- - type: map_at_3
508
- value: 0.43335
509
- - type: map_at_5
510
- value: 0.45279
511
- - type: mrr_at_1
512
- value: 0.42348
513
- - type: mrr_at_10
514
- value: 0.52972
515
- - type: mrr_at_100
516
- value: 0.53707
517
- - type: mrr_at_1000
518
- value: 0.53734
519
- - type: mrr_at_3
520
- value: 0.50722
521
- - type: mrr_at_5
522
- value: 0.52012
523
- - type: ndcg_at_1
524
- value: 0.42348
525
- - type: ndcg_at_10
526
- value: 0.53504
527
- - type: ndcg_at_100
528
- value: 0.58899
529
- - type: ndcg_at_1000
530
- value: 0.60323
531
- - type: ndcg_at_3
532
- value: 0.48478
533
- - type: ndcg_at_5
534
- value: 0.5079
535
- - type: precision_at_1
536
- value: 0.42348
537
- - type: precision_at_10
538
- value: 0.0975
539
- - type: precision_at_100
540
- value: 0.01466
541
- - type: precision_at_1000
542
- value: 0.00177
543
- - type: precision_at_3
544
- value: 0.23741
545
- - type: precision_at_5
546
- value: 0.16439
547
- - type: recall_at_1
548
- value: 0.33824
549
- - type: recall_at_10
550
- value: 0.67142
551
- - type: recall_at_100
552
- value: 0.89134
553
- - type: recall_at_1000
554
- value: 0.97816
555
- - type: recall_at_3
556
- value: 0.52305
557
- - type: recall_at_5
558
- value: 0.58804
559
- - task:
560
- type: Retrieval
561
- dataset:
562
- name: MTEB CQADupstackProgrammersRetrieval
563
- type: mteb/cqadupstack-programmers
564
- config: default
565
- split: test
566
- metrics:
567
- - type: map_at_1
568
- value: 0.30125
569
- - type: map_at_10
570
- value: 0.42119
571
- - type: map_at_100
572
- value: 0.43599
573
- - type: map_at_1000
574
- value: 0.4369
575
- - type: map_at_3
576
- value: 0.38018
577
- - type: map_at_5
578
- value: 0.40368
579
- - type: mrr_at_1
580
- value: 0.37557
581
- - type: mrr_at_10
582
- value: 0.47573
583
- - type: mrr_at_100
584
- value: 0.4846
585
- - type: mrr_at_1000
586
- value: 0.48499
587
- - type: mrr_at_3
588
- value: 0.44654
589
- - type: mrr_at_5
590
- value: 0.4644
591
- - type: ndcg_at_1
592
- value: 0.37557
593
- - type: ndcg_at_10
594
- value: 0.48743
595
- - type: ndcg_at_100
596
- value: 0.54458
597
- - type: ndcg_at_1000
598
- value: 0.56076
599
- - type: ndcg_at_3
600
- value: 0.42573
601
- - type: ndcg_at_5
602
- value: 0.45528
603
- - type: precision_at_1
604
- value: 0.37557
605
- - type: precision_at_10
606
- value: 0.09269
607
- - type: precision_at_100
608
- value: 0.01401
609
- - type: precision_at_1000
610
- value: 0.0017
611
- - type: precision_at_3
612
- value: 0.20624
613
- - type: precision_at_5
614
- value: 0.15068
615
- - type: recall_at_1
616
- value: 0.30125
617
- - type: recall_at_10
618
- value: 0.62619
619
- - type: recall_at_100
620
- value: 0.86574
621
- - type: recall_at_1000
622
- value: 0.97102
623
- - type: recall_at_3
624
- value: 0.45437
625
- - type: recall_at_5
626
- value: 0.53197
627
- - task:
628
- type: Retrieval
629
- dataset:
630
- name: MTEB CQADupstackStatsRetrieval
631
- type: mteb/cqadupstack-stats
632
- config: default
633
- split: test
634
- metrics:
635
- - type: map_at_1
636
- value: 0.29193
637
- - type: map_at_10
638
- value: 0.37529
639
- - type: map_at_100
640
- value: 0.38614
641
- - type: map_at_1000
642
- value: 0.38714
643
- - type: map_at_3
644
- value: 0.34897
645
- - type: map_at_5
646
- value: 0.36273
647
- - type: mrr_at_1
648
- value: 0.32669
649
- - type: mrr_at_10
650
- value: 0.40288
651
- - type: mrr_at_100
652
- value: 0.41177
653
- - type: mrr_at_1000
654
- value: 0.41241
655
- - type: mrr_at_3
656
- value: 0.38037
657
- - type: mrr_at_5
658
- value: 0.39195
659
- - type: ndcg_at_1
660
- value: 0.32669
661
- - type: ndcg_at_10
662
- value: 0.42353
663
- - type: ndcg_at_100
664
- value: 0.47424
665
- - type: ndcg_at_1000
666
- value: 0.4959
667
- - type: ndcg_at_3
668
- value: 0.37604
669
- - type: ndcg_at_5
670
- value: 0.39682
671
- - type: precision_at_1
672
- value: 0.32669
673
- - type: precision_at_10
674
- value: 0.06871
675
- - type: precision_at_100
676
- value: 0.01008
677
- - type: precision_at_1000
678
- value: 0.00126
679
- - type: precision_at_3
680
- value: 0.16309
681
- - type: precision_at_5
682
- value: 0.11288
683
- - type: recall_at_1
684
- value: 0.29193
685
- - type: recall_at_10
686
- value: 0.54159
687
- - type: recall_at_100
688
- value: 0.77267
689
- - type: recall_at_1000
690
- value: 0.92805
691
- - type: recall_at_3
692
- value: 0.41014
693
- - type: recall_at_5
694
- value: 0.46248
695
- - task:
696
- type: Retrieval
697
- dataset:
698
- name: MTEB CQADupstackTexRetrieval
699
- type: mteb/cqadupstack-tex
700
- config: default
701
- split: test
702
- metrics:
703
- - type: map_at_1
704
- value: 0.21217
705
- - type: map_at_10
706
- value: 0.30848
707
- - type: map_at_100
708
- value: 0.32173
709
- - type: map_at_1000
710
- value: 0.32296
711
- - type: map_at_3
712
- value: 0.27882
713
- - type: map_at_5
714
- value: 0.29537
715
- - type: mrr_at_1
716
- value: 0.25946
717
- - type: mrr_at_10
718
- value: 0.35091
719
- - type: mrr_at_100
720
- value: 0.36047
721
- - type: mrr_at_1000
722
- value: 0.36111
723
- - type: mrr_at_3
724
- value: 0.32485
725
- - type: mrr_at_5
726
- value: 0.33964
727
- - type: ndcg_at_1
728
- value: 0.25946
729
- - type: ndcg_at_10
730
- value: 0.3655
731
- - type: ndcg_at_100
732
- value: 0.42328
733
- - type: ndcg_at_1000
734
- value: 0.44783
735
- - type: ndcg_at_3
736
- value: 0.31463
737
- - type: ndcg_at_5
738
- value: 0.33803
739
- - type: precision_at_1
740
- value: 0.25946
741
- - type: precision_at_10
742
- value: 0.06793
743
- - type: precision_at_100
744
- value: 0.01138
745
- - type: precision_at_1000
746
- value: 0.00155
747
- - type: precision_at_3
748
- value: 0.1513
749
- - type: precision_at_5
750
- value: 0.10991
751
- - type: recall_at_1
752
- value: 0.21217
753
- - type: recall_at_10
754
- value: 0.49327
755
- - type: recall_at_100
756
- value: 0.7472
757
- - type: recall_at_1000
758
- value: 0.91637
759
- - type: recall_at_3
760
- value: 0.34993
761
- - type: recall_at_5
762
- value: 0.41029
763
- - task:
764
- type: Retrieval
765
- dataset:
766
- name: MTEB CQADupstackUnixRetrieval
767
- type: mteb/cqadupstack-unix
768
- config: default
769
- split: test
770
- metrics:
771
- - type: map_at_1
772
- value: 0.34303
773
- - type: map_at_10
774
- value: 0.45312
775
- - type: map_at_100
776
- value: 0.46563
777
- - type: map_at_1000
778
- value: 0.4664
779
- - type: map_at_3
780
- value: 0.4143
781
- - type: map_at_5
782
- value: 0.43633
783
- - type: mrr_at_1
784
- value: 0.40112
785
- - type: mrr_at_10
786
- value: 0.49097
787
- - type: mrr_at_100
788
- value: 0.49966
789
- - type: mrr_at_1000
790
- value: 0.50006
791
- - type: mrr_at_3
792
- value: 0.46129
793
- - type: mrr_at_5
794
- value: 0.47901
795
- - type: ndcg_at_1
796
- value: 0.40112
797
- - type: ndcg_at_10
798
- value: 0.513
799
- - type: ndcg_at_100
800
- value: 0.56534
801
- - type: ndcg_at_1000
802
- value: 0.58048
803
- - type: ndcg_at_3
804
- value: 0.4491
805
- - type: ndcg_at_5
806
- value: 0.48048
807
- - type: precision_at_1
808
- value: 0.40112
809
- - type: precision_at_10
810
- value: 0.08806
811
- - type: precision_at_100
812
- value: 0.01266
813
- - type: precision_at_1000
814
- value: 0.00149
815
- - type: precision_at_3
816
- value: 0.20211
817
- - type: precision_at_5
818
- value: 0.14496
819
- - type: recall_at_1
820
- value: 0.34303
821
- - type: recall_at_10
822
- value: 0.65508
823
- - type: recall_at_100
824
- value: 0.8753
825
- - type: recall_at_1000
826
- value: 0.9742
827
- - type: recall_at_3
828
- value: 0.48465
829
- - type: recall_at_5
830
- value: 0.56374
831
- - task:
832
- type: Retrieval
833
- dataset:
834
- name: MTEB CQADupstackWebmastersRetrieval
835
- type: mteb/cqadupstack-webmasters
836
- config: default
837
- split: test
838
- metrics:
839
- - type: map_at_1
840
- value: 0.30312
841
- - type: map_at_10
842
- value: 0.40931
843
- - type: map_at_100
844
- value: 0.42893
845
- - type: map_at_1000
846
- value: 0.4312
847
- - type: map_at_3
848
- value: 0.37527
849
- - type: map_at_5
850
- value: 0.3936
851
- - type: mrr_at_1
852
- value: 0.36364
853
- - type: mrr_at_10
854
- value: 0.45677
855
- - type: mrr_at_100
856
- value: 0.46753
857
- - type: mrr_at_1000
858
- value: 0.46787
859
- - type: mrr_at_3
860
- value: 0.42918
861
- - type: mrr_at_5
862
- value: 0.4443
863
- - type: ndcg_at_1
864
- value: 0.36364
865
- - type: ndcg_at_10
866
- value: 0.47301
867
- - type: ndcg_at_100
868
- value: 0.53698
869
- - type: ndcg_at_1000
870
- value: 0.55503
871
- - type: ndcg_at_3
872
- value: 0.41875
873
- - type: ndcg_at_5
874
- value: 0.44316
875
- - type: precision_at_1
876
- value: 0.36364
877
- - type: precision_at_10
878
- value: 0.09032
879
- - type: precision_at_100
880
- value: 0.01806
881
- - type: precision_at_1000
882
- value: 0.00258
883
- - type: precision_at_3
884
- value: 0.19499
885
- - type: precision_at_5
886
- value: 0.1415
887
- - type: recall_at_1
888
- value: 0.30312
889
- - type: recall_at_10
890
- value: 0.59418
891
- - type: recall_at_100
892
- value: 0.8656
893
- - type: recall_at_1000
894
- value: 0.97412
895
- - type: recall_at_3
896
- value: 0.44251
897
- - type: recall_at_5
898
- value: 0.50457
899
- - task:
900
- type: Retrieval
901
- dataset:
902
- name: MTEB CQADupstackWordpressRetrieval
903
- type: mteb/cqadupstack-wordpress
904
- config: default
905
- split: test
906
- metrics:
907
- - type: map_at_1
908
- value: 0.23851
909
- - type: map_at_10
910
- value: 0.33429
911
- - type: map_at_100
912
- value: 0.34482
913
- - type: map_at_1000
914
- value: 0.3457
915
- - type: map_at_3
916
- value: 0.30271
917
- - type: map_at_5
918
- value: 0.31905
919
- - type: mrr_at_1
920
- value: 0.25693
921
- - type: mrr_at_10
922
- value: 0.35383
923
- - type: mrr_at_100
924
- value: 0.36295
925
- - type: mrr_at_1000
926
- value: 0.36346
927
- - type: mrr_at_3
928
- value: 0.32532
929
- - type: mrr_at_5
930
- value: 0.3402
931
- - type: ndcg_at_1
932
- value: 0.25693
933
- - type: ndcg_at_10
934
- value: 0.39196
935
- - type: ndcg_at_100
936
- value: 0.44501
937
- - type: ndcg_at_1000
938
- value: 0.46482
939
- - type: ndcg_at_3
940
- value: 0.33
941
- - type: ndcg_at_5
942
- value: 0.35736
943
- - type: precision_at_1
944
- value: 0.25693
945
- - type: precision_at_10
946
- value: 0.06433
947
- - type: precision_at_100
948
- value: 0.00989
949
- - type: precision_at_1000
950
- value: 0.00128
951
- - type: precision_at_3
952
- value: 0.14295
953
- - type: precision_at_5
954
- value: 0.10277
955
- - type: recall_at_1
956
- value: 0.23851
957
- - type: recall_at_10
958
- value: 0.55036
959
- - type: recall_at_100
960
- value: 0.79592
961
- - type: recall_at_1000
962
- value: 0.94283
963
- - type: recall_at_3
964
- value: 0.38435
965
- - type: recall_at_5
966
- value: 0.44872
967
- - task:
968
- type: Retrieval
969
- dataset:
970
- name: MTEB DBPedia
971
- type: mteb/dbpedia
972
- config: default
973
- split: test
974
- metrics:
975
- - type: map_at_1
976
- value: 0.0871
977
- - type: map_at_10
978
- value: 0.19218
979
- - type: map_at_100
980
- value: 0.26291
981
- - type: map_at_1000
982
- value: 0.27985
983
- - type: map_at_3
984
- value: 0.13974
985
- - type: map_at_5
986
- value: 0.16104
987
- - type: mrr_at_1
988
- value: 0.6725
989
- - type: mrr_at_10
990
- value: 0.75037
991
- - type: mrr_at_100
992
- value: 0.75318
993
- - type: mrr_at_1000
994
- value: 0.75325
995
- - type: mrr_at_3
996
- value: 0.73833
997
- - type: mrr_at_5
998
- value: 0.74308
999
- - type: ndcg_at_1
1000
- value: 0.54375
1001
- - type: ndcg_at_10
1002
- value: 0.39409
1003
- - type: ndcg_at_100
1004
- value: 0.44382
1005
- - type: ndcg_at_1000
1006
- value: 0.52485
1007
- - type: ndcg_at_3
1008
- value: 0.44463
1009
- - type: ndcg_at_5
1010
- value: 0.41276
1011
- - type: precision_at_1
1012
- value: 0.6725
1013
- - type: precision_at_10
1014
- value: 0.3055
1015
- - type: precision_at_100
1016
- value: 0.09588
1017
- - type: precision_at_1000
1018
- value: 0.02118
1019
- - type: precision_at_3
1020
- value: 0.48167
1021
- - type: precision_at_5
1022
- value: 0.394
1023
- - type: recall_at_1
1024
- value: 0.0871
1025
- - type: recall_at_10
1026
- value: 0.2527
1027
- - type: recall_at_100
1028
- value: 0.5185
1029
- - type: recall_at_1000
1030
- value: 0.76491
1031
- - type: recall_at_3
1032
- value: 0.15516
1033
- - type: recall_at_5
1034
- value: 0.18907
1035
- - task:
1036
- type: Retrieval
1037
- dataset:
1038
- name: MTEB FEVER
1039
- type: mteb/fever
1040
- config: default
1041
- split: test
1042
- metrics:
1043
- - type: map_at_1
1044
- value: 0.78993
1045
- - type: map_at_10
1046
- value: 0.8502
1047
- - type: map_at_100
1048
- value: 0.85186
1049
- - type: map_at_1000
1050
- value: 0.852
1051
- - type: map_at_3
1052
- value: 0.8437
1053
- - type: map_at_5
1054
- value: 0.84812
1055
- - type: mrr_at_1
1056
- value: 0.85179
1057
- - type: mrr_at_10
1058
- value: 0.90744
1059
- - type: mrr_at_100
1060
- value: 0.90799
1061
- - type: mrr_at_1000
1062
- value: 0.90801
1063
- - type: mrr_at_3
1064
- value: 0.90322
1065
- - type: mrr_at_5
1066
- value: 0.90622
1067
- - type: ndcg_at_1
1068
- value: 0.85179
1069
- - type: ndcg_at_10
1070
- value: 0.88229
1071
- - type: ndcg_at_100
1072
- value: 0.8884
1073
- - type: ndcg_at_1000
1074
- value: 0.89116
1075
- - type: ndcg_at_3
1076
- value: 0.87304
1077
- - type: ndcg_at_5
1078
- value: 0.87862
1079
- - type: precision_at_1
1080
- value: 0.85179
1081
- - type: precision_at_10
1082
- value: 0.10129
1083
- - type: precision_at_100
1084
- value: 0.0106
1085
- - type: precision_at_1000
1086
- value: 0.0011
1087
- - type: precision_at_3
1088
- value: 0.32543
1089
- - type: precision_at_5
1090
- value: 0.19931
1091
- - type: recall_at_1
1092
- value: 0.78993
1093
- - type: recall_at_10
1094
- value: 0.92685
1095
- - type: recall_at_100
1096
- value: 0.9516
1097
- - type: recall_at_1000
1098
- value: 0.96943
1099
- - type: recall_at_3
1100
- value: 0.89965
1101
- - type: recall_at_5
1102
- value: 0.91562
1103
- - task:
1104
- type: Retrieval
1105
- dataset:
1106
- name: MTEB FiQA2018
1107
- type: mteb/fiqa
1108
- config: default
1109
- split: test
1110
- metrics:
1111
- - type: map_at_1
1112
- value: 0.22586
1113
- - type: map_at_10
1114
- value: 0.36836
1115
- - type: map_at_100
1116
- value: 0.38863
1117
- - type: map_at_1000
1118
- value: 0.39041
1119
- - type: map_at_3
1120
- value: 0.32445
1121
- - type: map_at_5
1122
- value: 0.34951
1123
- - type: mrr_at_1
1124
- value: 0.44599
1125
- - type: mrr_at_10
1126
- value: 0.53471
1127
- - type: mrr_at_100
1128
- value: 0.54186
1129
- - type: mrr_at_1000
1130
- value: 0.54223
1131
- - type: mrr_at_3
1132
- value: 0.51157
1133
- - type: mrr_at_5
1134
- value: 0.52423
1135
- - type: ndcg_at_1
1136
- value: 0.44599
1137
- - type: ndcg_at_10
1138
- value: 0.44931
1139
- - type: ndcg_at_100
1140
- value: 0.51914
1141
- - type: ndcg_at_1000
1142
- value: 0.54674
1143
- - type: ndcg_at_3
1144
- value: 0.41597
1145
- - type: ndcg_at_5
1146
- value: 0.42611
1147
- - type: precision_at_1
1148
- value: 0.44599
1149
- - type: precision_at_10
1150
- value: 0.12346
1151
- - type: precision_at_100
1152
- value: 0.01951
1153
- - type: precision_at_1000
1154
- value: 0.00244
1155
- - type: precision_at_3
1156
- value: 0.27623
1157
- - type: precision_at_5
1158
- value: 0.20093
1159
- - type: recall_at_1
1160
- value: 0.22586
1161
- - type: recall_at_10
1162
- value: 0.5152
1163
- - type: recall_at_100
1164
- value: 0.77251
1165
- - type: recall_at_1000
1166
- value: 0.93503
1167
- - type: recall_at_3
1168
- value: 0.37802
1169
- - type: recall_at_5
1170
- value: 0.4386
1171
- - task:
1172
- type: Retrieval
1173
- dataset:
1174
- name: MTEB HotpotQA
1175
- type: mteb/hotpotqa
1176
- config: default
1177
- split: test
1178
- metrics:
1179
- - type: map_at_1
1180
- value: 0.38177
1181
- - type: map_at_10
1182
- value: 0.59021
1183
- - type: map_at_100
1184
- value: 0.59924
1185
- - type: map_at_1000
1186
- value: 0.59989
1187
- - type: map_at_3
1188
- value: 0.55553
1189
- - type: map_at_5
1190
- value: 0.57773
1191
- - type: mrr_at_1
1192
- value: 0.76354
1193
- - type: mrr_at_10
1194
- value: 0.827
1195
- - type: mrr_at_100
1196
- value: 0.82887
1197
- - type: mrr_at_1000
1198
- value: 0.82896
1199
- - type: mrr_at_3
1200
- value: 0.8172
1201
- - type: mrr_at_5
1202
- value: 0.82338
1203
- - type: ndcg_at_1
1204
- value: 0.76354
1205
- - type: ndcg_at_10
1206
- value: 0.67775
1207
- - type: ndcg_at_100
1208
- value: 0.70849
1209
- - type: ndcg_at_1000
1210
- value: 0.7215
1211
- - type: ndcg_at_3
1212
- value: 0.629
1213
- - type: ndcg_at_5
1214
- value: 0.65679
1215
- - type: precision_at_1
1216
- value: 0.76354
1217
- - type: precision_at_10
1218
- value: 0.14176
1219
- - type: precision_at_100
1220
- value: 0.01656
1221
- - type: precision_at_1000
1222
- value: 0.00183
1223
- - type: precision_at_3
1224
- value: 0.40113
1225
- - type: precision_at_5
1226
- value: 0.26255
1227
- - type: recall_at_1
1228
- value: 0.38177
1229
- - type: recall_at_10
1230
- value: 0.70878
1231
- - type: recall_at_100
1232
- value: 0.82822
1233
- - type: recall_at_1000
1234
- value: 0.91472
1235
- - type: recall_at_3
1236
- value: 0.60169
1237
- - type: recall_at_5
1238
- value: 0.65638
1239
- - task:
1240
- type: Retrieval
1241
- dataset:
1242
- name: MTEB MSMARCO
1243
- type: mteb/msmarco
1244
- config: default
1245
- split: dev
1246
- metrics:
1247
- - type: map_at_1
1248
- value: 0.15062
1249
- - type: map_at_10
1250
- value: 0.26008
1251
- - type: map_at_100
1252
- value: 0.27305
1253
- - type: map_at_1000
1254
- value: 0.27373
1255
- - type: map_at_3
1256
- value: 0.22236
1257
- - type: map_at_5
1258
- value: 0.24362
1259
- - type: mrr_at_1
1260
- value: 0.15444
1261
- - type: mrr_at_10
1262
- value: 0.26458
1263
- - type: mrr_at_100
1264
- value: 0.27718
1265
- - type: mrr_at_1000
1266
- value: 0.2778
1267
- - type: mrr_at_3
1268
- value: 0.22701
1269
- - type: mrr_at_5
1270
- value: 0.24844
1271
- - type: ndcg_at_1
1272
- value: 0.15444
1273
- - type: ndcg_at_10
1274
- value: 0.32495
1275
- - type: ndcg_at_100
1276
- value: 0.38957
1277
- - type: ndcg_at_1000
1278
- value: 0.40684
1279
- - type: ndcg_at_3
1280
- value: 0.24745
1281
- - type: ndcg_at_5
1282
- value: 0.2856
1283
- - type: precision_at_1
1284
- value: 0.15444
1285
- - type: precision_at_10
1286
- value: 0.05486
1287
- - type: precision_at_100
1288
- value: 0.00875
1289
- - type: precision_at_1000
1290
- value: 0.00102
1291
- - type: precision_at_3
1292
- value: 0.1086
1293
- - type: precision_at_5
1294
- value: 0.08441
1295
- - type: recall_at_1
1296
- value: 0.15062
1297
- - type: recall_at_10
1298
- value: 0.5272
1299
- - type: recall_at_100
1300
- value: 0.83006
1301
- - type: recall_at_1000
1302
- value: 0.96263
1303
- - type: recall_at_3
1304
- value: 0.31556
1305
- - type: recall_at_5
1306
- value: 0.40706
1307
- - task:
1308
- type: Retrieval
1309
- dataset:
1310
- name: MTEB NFCorpus
1311
- type: mteb/nfcorpus
1312
- config: default
1313
- split: test
1314
- metrics:
1315
- - type: map_at_1
1316
- value: 0.06126
1317
- - type: map_at_10
1318
- value: 0.14152
1319
- - type: map_at_100
1320
- value: 0.1827
1321
- - type: map_at_1000
1322
- value: 0.1988
1323
- - type: map_at_3
1324
- value: 0.10301
1325
- - type: map_at_5
1326
- value: 0.12085
1327
- - type: mrr_at_1
1328
- value: 0.47988
1329
- - type: mrr_at_10
1330
- value: 0.5692
1331
- - type: mrr_at_100
1332
- value: 0.57428
1333
- - type: mrr_at_1000
1334
- value: 0.57482
1335
- - type: mrr_at_3
1336
- value: 0.55315
1337
- - type: mrr_at_5
1338
- value: 0.56352
1339
- - type: ndcg_at_1
1340
- value: 0.45356
1341
- - type: ndcg_at_10
1342
- value: 0.3725
1343
- - type: ndcg_at_100
1344
- value: 0.34496
1345
- - type: ndcg_at_1000
1346
- value: 0.43374
1347
- - type: ndcg_at_3
1348
- value: 0.42643
1349
- - type: ndcg_at_5
1350
- value: 0.40882
1351
- - type: precision_at_1
1352
- value: 0.47368
1353
- - type: precision_at_10
1354
- value: 0.2774
1355
- - type: precision_at_100
1356
- value: 0.09071
1357
- - type: precision_at_1000
1358
- value: 0.02226
1359
- - type: precision_at_3
1360
- value: 0.40144
1361
- - type: precision_at_5
1362
- value: 0.35913
1363
- - type: recall_at_1
1364
- value: 0.06126
1365
- - type: recall_at_10
1366
- value: 0.18427
1367
- - type: recall_at_100
1368
- value: 0.35018
1369
- - type: recall_at_1000
1370
- value: 0.6766
1371
- - type: recall_at_3
1372
- value: 0.11706
1373
- - type: recall_at_5
1374
- value: 0.14419
1375
- - task:
1376
- type: Retrieval
1377
- dataset:
1378
- name: MTEB NQ
1379
- type: mteb/nq
1380
- config: default
1381
- split: test
1382
- metrics:
1383
- - type: map_at_1
1384
- value: 0.33053
1385
- - type: map_at_10
1386
- value: 0.49739
1387
- - type: map_at_100
1388
- value: 0.50626
1389
- - type: map_at_1000
1390
- value: 0.50647
1391
- - type: map_at_3
1392
- value: 0.4491
1393
- - type: map_at_5
1394
- value: 0.4783
1395
- - type: mrr_at_1
1396
- value: 0.37254
1397
- - type: mrr_at_10
1398
- value: 0.52222
1399
- - type: mrr_at_100
1400
- value: 0.52855
1401
- - type: mrr_at_1000
1402
- value: 0.52869
1403
- - type: mrr_at_3
1404
- value: 0.48445
1405
- - type: mrr_at_5
1406
- value: 0.50834
1407
- - type: ndcg_at_1
1408
- value: 0.37254
1409
- - type: ndcg_at_10
1410
- value: 0.58044
1411
- - type: ndcg_at_100
1412
- value: 0.61613
1413
- - type: ndcg_at_1000
1414
- value: 0.62046
1415
- - type: ndcg_at_3
1416
- value: 0.49219
1417
- - type: ndcg_at_5
1418
- value: 0.54037
1419
- - type: precision_at_1
1420
- value: 0.37254
1421
- - type: precision_at_10
1422
- value: 0.09655
1423
- - type: precision_at_100
1424
- value: 0.01167
1425
- - type: precision_at_1000
1426
- value: 0.00121
1427
- - type: precision_at_3
1428
- value: 0.22538
1429
- - type: precision_at_5
1430
- value: 0.16344
1431
- - type: recall_at_1
1432
- value: 0.33053
1433
- - type: recall_at_10
1434
- value: 0.8076
1435
- - type: recall_at_100
1436
- value: 0.95862
1437
- - type: recall_at_1000
1438
- value: 0.99044
1439
- - type: recall_at_3
1440
- value: 0.58157
1441
- - type: recall_at_5
1442
- value: 0.69235
1443
- - task:
1444
- type: Retrieval
1445
- dataset:
1446
- name: MTEB QuoraRetrieval
1447
- type: mteb/quora
1448
- config: default
1449
- split: test
1450
- metrics:
1451
- - type: map_at_1
1452
- value: 0.70056
1453
- - type: map_at_10
1454
- value: 0.84009
1455
- - type: map_at_100
1456
- value: 0.84661
1457
- - type: map_at_1000
1458
- value: 0.84678
1459
- - type: map_at_3
1460
- value: 0.81036
1461
- - type: map_at_5
1462
- value: 0.82923
1463
- - type: mrr_at_1
1464
- value: 0.8062
1465
- - type: mrr_at_10
1466
- value: 0.86971
1467
- - type: mrr_at_100
1468
- value: 0.87079
1469
- - type: mrr_at_1000
1470
- value: 0.8708
1471
- - type: mrr_at_3
1472
- value: 0.85943
1473
- - type: mrr_at_5
1474
- value: 0.86664
1475
- - type: ndcg_at_1
1476
- value: 0.8064
1477
- - type: ndcg_at_10
1478
- value: 0.87821
1479
- - type: ndcg_at_100
1480
- value: 0.89091
1481
- - type: ndcg_at_1000
1482
- value: 0.89202
1483
- - type: ndcg_at_3
1484
- value: 0.849
1485
- - type: ndcg_at_5
1486
- value: 0.86544
1487
- - type: precision_at_1
1488
- value: 0.8064
1489
- - type: precision_at_10
1490
- value: 0.13347
1491
- - type: precision_at_100
1492
- value: 0.01527
1493
- - type: precision_at_1000
1494
- value: 0.00157
1495
- - type: precision_at_3
1496
- value: 0.37153
1497
- - type: precision_at_5
1498
- value: 0.2448
1499
- - type: recall_at_1
1500
- value: 0.70056
1501
- - type: recall_at_10
1502
- value: 0.95148
1503
- - type: recall_at_100
1504
- value: 0.99474
1505
- - type: recall_at_1000
1506
- value: 0.99977
1507
- - type: recall_at_3
1508
- value: 0.86773
1509
- - type: recall_at_5
1510
- value: 0.91396
1511
- - task:
1512
- type: Retrieval
1513
- dataset:
1514
- name: MTEB SCIDOCS
1515
- type: mteb/scidocs
1516
- config: default
1517
- split: test
1518
- metrics:
1519
- - type: map_at_1
1520
- value: 0.05737
1521
- - type: map_at_10
1522
- value: 0.14896
1523
- - type: map_at_100
1524
- value: 0.17646
1525
- - type: map_at_1000
1526
- value: 0.1803
1527
- - type: map_at_3
1528
- value: 0.10474
1529
- - type: map_at_5
1530
- value: 0.12656
1531
- - type: mrr_at_1
1532
- value: 0.281
1533
- - type: mrr_at_10
1534
- value: 0.39579
1535
- - type: mrr_at_100
1536
- value: 0.40687
1537
- - type: mrr_at_1000
1538
- value: 0.40722
1539
- - type: mrr_at_3
1540
- value: 0.35917
1541
- - type: mrr_at_5
1542
- value: 0.38097
1543
- - type: ndcg_at_1
1544
- value: 0.281
1545
- - type: ndcg_at_10
1546
- value: 0.24146
1547
- - type: ndcg_at_100
1548
- value: 0.339
1549
- - type: ndcg_at_1000
1550
- value: 0.39728
1551
- - type: ndcg_at_3
1552
- value: 0.22721
1553
- - type: ndcg_at_5
1554
- value: 0.20015
1555
- - type: precision_at_1
1556
- value: 0.281
1557
- - type: precision_at_10
1558
- value: 0.1254
1559
- - type: precision_at_100
1560
- value: 0.02651
1561
- - type: precision_at_1000
1562
- value: 0.00404
1563
- - type: precision_at_3
1564
- value: 0.212
1565
- - type: precision_at_5
1566
- value: 0.176
1567
- - type: recall_at_1
1568
- value: 0.05737
1569
- - type: recall_at_10
1570
- value: 0.254
1571
- - type: recall_at_100
1572
- value: 0.53772
1573
- - type: recall_at_1000
1574
- value: 0.82013
1575
- - type: recall_at_3
1576
- value: 0.12897
1577
- - type: recall_at_5
1578
- value: 0.17855
1579
- - task:
1580
- type: Retrieval
1581
- dataset:
1582
- name: MTEB SciFact
1583
- type: mteb/scifact
1584
- config: default
1585
- split: test
1586
- metrics:
1587
- - type: map_at_1
1588
- value: 0.60011
1589
- - type: map_at_10
1590
- value: 0.70101
1591
- - type: map_at_100
1592
- value: 0.70687
1593
- - type: map_at_1000
1594
- value: 0.70699
1595
- - type: map_at_3
1596
- value: 0.67135
1597
- - type: map_at_5
1598
- value: 0.6878
1599
- - type: mrr_at_1
1600
- value: 0.62667
1601
- - type: mrr_at_10
1602
- value: 0.71022
1603
- - type: mrr_at_100
1604
- value: 0.71484
1605
- - type: mrr_at_1000
1606
- value: 0.71496
1607
- - type: mrr_at_3
1608
- value: 0.68944
1609
- - type: mrr_at_5
1610
- value: 0.69961
1611
- - type: ndcg_at_1
1612
- value: 0.62667
1613
- - type: ndcg_at_10
1614
- value: 0.7472
1615
- - type: ndcg_at_100
1616
- value: 0.76961
1617
- - type: ndcg_at_1000
1618
- value: 0.77294
1619
- - type: ndcg_at_3
1620
- value: 0.69776
1621
- - type: ndcg_at_5
1622
- value: 0.71964
1623
- - type: precision_at_1
1624
- value: 0.62667
1625
- - type: precision_at_10
1626
- value: 0.09933
1627
- - type: precision_at_100
1628
- value: 0.01103
1629
- - type: precision_at_1000
1630
- value: 0.00113
1631
- - type: precision_at_3
1632
- value: 0.27
1633
- - type: precision_at_5
1634
- value: 0.178
1635
- - type: recall_at_1
1636
- value: 0.60011
1637
- - type: recall_at_10
1638
- value: 0.878
1639
- - type: recall_at_100
1640
- value: 0.97333
1641
- - type: recall_at_1000
1642
- value: 1
1643
- - type: recall_at_3
1644
- value: 0.74839
1645
- - type: recall_at_5
1646
- value: 0.80028
1647
- - task:
1648
- type: Retrieval
1649
- dataset:
1650
- name: MTEB Touche2020
1651
- type: mteb/touche2020
1652
- config: default
1653
- split: test
1654
- metrics:
1655
- - type: map_at_1
1656
- value: 0.02152
1657
- - type: map_at_10
1658
- value: 0.07747
1659
- - type: map_at_100
1660
- value: 0.1364
1661
- - type: map_at_1000
1662
- value: 0.15235
1663
- - type: map_at_3
1664
- value: 0.04103
1665
- - type: map_at_5
1666
- value: 0.05482
1667
- - type: mrr_at_1
1668
- value: 0.26531
1669
- - type: mrr_at_10
1670
- value: 0.41399
1671
- - type: mrr_at_100
1672
- value: 0.43047
1673
- - type: mrr_at_1000
1674
- value: 0.43047
1675
- - type: mrr_at_3
1676
- value: 0.38776
1677
- - type: mrr_at_5
1678
- value: 0.40612
1679
- - type: ndcg_at_1
1680
- value: 0.23469
1681
- - type: ndcg_at_10
1682
- value: 0.20147
1683
- - type: ndcg_at_100
1684
- value: 0.3279
1685
- - type: ndcg_at_1000
1686
- value: 0.45324
1687
- - type: ndcg_at_3
1688
- value: 0.22555
1689
- - type: ndcg_at_5
1690
- value: 0.2097
1691
- - type: precision_at_1
1692
- value: 0.26531
1693
- - type: precision_at_10
1694
- value: 0.17755
1695
- - type: precision_at_100
1696
- value: 0.07082
1697
- - type: precision_at_1000
1698
- value: 0.01547
1699
- - type: precision_at_3
1700
- value: 0.2449
1701
- - type: precision_at_5
1702
- value: 0.21633
1703
- - type: recall_at_1
1704
- value: 0.02152
1705
- - type: recall_at_10
1706
- value: 0.13331
1707
- - type: recall_at_100
1708
- value: 0.4535
1709
- - type: recall_at_1000
1710
- value: 0.83447
1711
- - type: recall_at_3
1712
- value: 0.05531
1713
- - type: recall_at_5
1714
- value: 0.08029
1715
- - task:
1716
- type: Retrieval
1717
- dataset:
1718
- name: MTEB TRECCOVID
1719
- type: mteb/trec-covid
1720
- config: default
1721
- split: test
1722
- metrics:
1723
- - type: map_at_1
1724
- value: 0.00202
1725
- - type: map_at_10
1726
- value: 0.01727
1727
- - type: map_at_100
1728
- value: 0.10906
1729
- - type: map_at_1000
1730
- value: 0.2894
1731
- - type: map_at_3
1732
- value: 0.00553
1733
- - type: map_at_5
1734
- value: 0.00924
1735
- - type: mrr_at_1
1736
- value: 0.74
1737
- - type: mrr_at_10
1738
- value: 0.85667
1739
- - type: mrr_at_100
1740
- value: 0.85667
1741
- - type: mrr_at_1000
1742
- value: 0.85667
1743
- - type: mrr_at_3
1744
- value: 0.85667
1745
- - type: mrr_at_5
1746
- value: 0.85667
1747
- - type: ndcg_at_1
1748
- value: 0.66
1749
- - type: ndcg_at_10
1750
- value: 0.69259
1751
- - type: ndcg_at_100
1752
- value: 0.57274
1753
- - type: ndcg_at_1000
1754
- value: 0.55462
1755
- - type: ndcg_at_3
1756
- value: 0.70654
1757
- - type: ndcg_at_5
1758
- value: 0.71611
1759
- - type: precision_at_1
1760
- value: 0.74
1761
- - type: precision_at_10
1762
- value: 0.748
1763
- - type: precision_at_100
1764
- value: 0.5962
1765
- - type: precision_at_1000
1766
- value: 0.24842
1767
- - type: precision_at_3
1768
- value: 0.77333
1769
- - type: precision_at_5
1770
- value: 0.788
1771
- - type: recall_at_1
1772
- value: 0.00202
1773
- - type: recall_at_10
1774
- value: 0.02001
1775
- - type: recall_at_100
1776
- value: 0.14801
1777
- - type: recall_at_1000
1778
- value: 0.53939
1779
- - type: recall_at_3
1780
- value: 0.00609
1781
- - type: recall_at_5
1782
- value: 0.01048
1783
  ---
1784
  ## 💫 Community Model> granite embedding 125m english by Ibm-Granite
1785
 
@@ -1787,7 +8,7 @@ model-index:
1787
 
1788
  **Model creator:** [ibm-granite](https://huggingface.co/ibm-granite)<br>
1789
  **Original model**: [granite-embedding-125m-english](https://huggingface.co/ibm-granite/granite-embedding-125m-english)<br>
1790
- **GGUF quantization:** provided by [bartowski](https://huggingface.co/bartowski) based on `llama.cpp` release [b4341](https://github.com/ggerganov/llama.cpp/releases/tag/b4341)<br>
1791
 
1792
  ## Technical Details
1793
 
 
1
  ---
2
  quantized_by: bartowski
3
  pipeline_tag: text-generation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
  ## 💫 Community Model> granite embedding 125m english by Ibm-Granite
6
 
 
8
 
9
  **Model creator:** [ibm-granite](https://huggingface.co/ibm-granite)<br>
10
  **Original model**: [granite-embedding-125m-english](https://huggingface.co/ibm-granite/granite-embedding-125m-english)<br>
11
+ **GGUF quantization:** provided by [bartowski](https://huggingface.co/bartowski) based on `llama.cpp` release [b4381](https://github.com/ggerganov/llama.cpp/releases/tag/b4381)<br>
12
 
13
  ## Technical Details
14