from __future__ import annotations import logging import re import subprocess from pathlib import Path import numpy as np from scipy.signal import medfilt from tqdm import tqdm from s3prl.base import Container from s3prl.base.workspace import Workspace from s3prl.corpus.kaldi import kaldi_for_multiclass_tagging from s3prl.dataset.base import SequentialDataPipe from s3prl.dataset.chunking import UnfoldChunkByFrame from s3prl.dataset.common_pipes import LoadAudio, SetOutputKeys from s3prl.dataset.multiclass_tagging import BuildMultiClassTagging from s3prl.encoder.category import CategoryEncoder from s3prl.nn.rnn import SuperbDiarizationModel from s3prl.sampler import FixedBatchSizeBatchSampler, GroupSameItemSampler from s3prl.task.diarization import DiarizationPIT from s3prl.util.configuration import default_cfg, field from .base import SuperbProblem logger = logging.getLogger(__name__) class SuperbSDDatapipe(SequentialDataPipe): def __init__( self, feat_frame_shift: int, sample_rate: int = 16000, **kwds, ): super().__init__( UnfoldChunkByFrame( min_chunk_frames=2000, max_chunk_frames=2000, step_frames=2000, feat_frame_shift=feat_frame_shift, sample_rate=sample_rate, ), BuildMultiClassTagging( sample_rate=sample_rate, feat_frame_shift=feat_frame_shift ), LoadAudio(audio_sample_rate=sample_rate), SetOutputKeys( x="wav", x_len="wav_len", label="multiclass_tag", label_len="tag_len", rec_id="unchunked_id", order_in_rec="chunk_index", ), ) def prediction_numpy_to_segment_secs( prediction: np.ndarray, threshold: float = 0.5, median_filter: int = 1, frame_shift: int = 160, subsampling: int = 1, sampling_rate: int = 16000, ): """ prediction: (timestamps, class_num), all values are in 0~1 """ hard_pred = np.where(prediction > threshold, 1, 0) if median_filter > 1: hard_pred = medfilt(hard_pred, (median_filter, 1)) factor = frame_shift * subsampling / sampling_rate segments = dict() for classid, frames in enumerate(hard_pred.T): frames = np.pad(frames, (1, 1), "constant") (changes,) = np.where(np.diff(frames, axis=0) != 0) if len(changes) > 0: class_name = str(classid) segments[class_name] = [] for s, e in zip(changes[::2], changes[1::2]): start = s * factor end = e * factor segments[class_name].append((start, end)) return segments class SuperbSD(SuperbProblem): """ Superb Intent Classification problem """ @default_cfg( **SuperbProblem.setup.default_except( corpus=dict( CLS=kaldi_for_multiclass_tagging, dataset_root="???", ), train_datapipe=dict( CLS=SuperbSDDatapipe, train_category_encoder=True, ), train_sampler=dict( CLS=FixedBatchSizeBatchSampler, batch_size=8, shuffle=True, ), valid_datapipe=dict( CLS=SuperbSDDatapipe, ), valid_sampler=dict( CLS=FixedBatchSizeBatchSampler, batch_size=1, ), test_datapipe=dict( CLS=SuperbSDDatapipe, ), test_sampler=dict( CLS=GroupSameItemSampler, item_name="unchunked_id", item_order_name="chunk_index", ), downstream=dict( CLS=SuperbDiarizationModel, output_size=2, # speaker num per recording hidden_size=512, rnn_layers=1, ), task=dict( CLS=DiarizationPIT, ), ) ) @classmethod def setup(cls, **cfg): """ This setups the IC problem, containing train/valid/test datasets & samplers and a task object """ super().setup(**cfg) @default_cfg( **SuperbProblem.train.default_except( optimizer=dict( CLS="torch.optim.Adam", lr=1.0e-4, ), trainer=dict( total_steps=30000, log_step=500, eval_step=500, save_step=500, gradient_clipping=1.0, gradient_accumulate_steps=4, valid_metric="der", valid_higher_better=False, ), ) ) @classmethod def train(cls, **cfg): """ Train the setup problem with the train/valid datasets & samplers and the task object """ super().train(**cfg) @default_cfg(**SuperbProblem.inference.default_cfg) @classmethod def inference(cls, **cfg): super().inference(**cfg) @default_cfg( workspace="???", prediction=field( "prediction", "The directory name under the workspace containing all the predicted numpy", ), test_data=field("test_data", "The testing data (in dict) under this workspace"), median_filters=field([1, 11], "The median filter sizes to try when scoring"), thresholds=field( [0.3, 0.4, 0.5, 0.6, 0.7], "The threshold to try when determining 0/1 hard prediction.\n" "The raw predictions are all between 0~1\n", ), frame_shift=field( None, "The frame shift of the prediction np.ndarray. Used to map the frame-level prediction back to seconds", int, ), ) @classmethod def scoring(cls, **cfg): cfg = Container(cfg) workspace = Workspace(cfg.workspace) frame_shift = cfg.frame_shift or workspace.environ["feat_frame_shift"] test_data: dict = workspace[cfg.test_data] test_segments = { reco: data_point["segments"] for reco, data_point in test_data.items() } test_rttm = workspace.put(test_segments, "test_rttm", "rttm") rttm_dir = workspace / "rttm" scoring_dir = workspace / "scoring" scoring_dir.mkdir(exist_ok=True, parents=True) all_ders = [] reco2pred = {} for p in tqdm((workspace / cfg.prediction).files(), desc="Load prediction"): reco2pred[p] = (workspace / cfg.prediction)[p] for median_filter in cfg.median_filters: for threshold in cfg.thresholds: logger.info( "Decode prediction numpy array with the setting: median filter=" f"{median_filter}, threshold={threshold}" ) all_segments = dict() workspace = Workspace(workspace) at_least_one_segment = False for p in tqdm( (workspace / cfg.prediction).files(), desc="prediction to seconds" ): segments = prediction_numpy_to_segment_secs( reco2pred[p], threshold, median_filter, frame_shift, ) if len(segments) > 0: at_least_one_segment = True all_segments[p] = segments if not at_least_one_segment: logger.info("No segments found under this decoding setting") continue identifier = f"hyp_threshold-{threshold}_median-{median_filter}" hyp_rttm = rttm_dir.put(all_segments, identifier, "rttm") overall_der = cls.score_with_dscore( dscore_dir=workspace / "dscore", hyp_rttm=hyp_rttm, gt_rttm=test_rttm, score_file=Path(scoring_dir / identifier), ) logger.info( f"Overall DER with median_filter {median_filter} and threshold {threshold}: {overall_der}" ) all_ders.append(overall_der) all_ders.sort() best_der = all_ders[0] logger.info(f"Best DER on test data: {best_der}") workspace.put(dict(der=best_der), "test_metric", "yaml") @default_cfg( **SuperbProblem.run.default_except( stages=["setup", "train", "inference", "scoring"], start_stage="setup", final_stage="scoring", setup=setup.default_cfg.deselect("workspace", "resume", "dryrun"), train=train.default_cfg.deselect("workspace", "resume", "dryrun"), inference=inference.default_cfg.deselect("workspace", "resume", "dryrun"), scoring=scoring.default_cfg.deselect("workspace"), ) ) @classmethod def run(cls, **cfg): super().run(**cfg) @default_cfg( dscore_dir=field("???", "The directory containing the 'dscore' repository"), hyp_rttm=field("???", "The hypothesis rttm file"), gt_rttm=field("???", "The ground truth rttm file"), score_file=field("???", "The scored result file"), ) @classmethod def score_with_dscore(cls, **cfg) -> float: """ This function returns the overall DER score, and will also write the detailed scoring results to 'score_file' """ cfg = Container(cfg) dscore_dir = Workspace(cfg.dscore_dir) if not dscore_dir.is_dir() or "score" not in dscore_dir.files(): subprocess.check_output( f"git clone https://github.com/nryant/dscore.git {dscore_dir}", shell=True, ).decode("utf-8") result = subprocess.check_call( f"python3 {dscore_dir}/score.py -r {cfg.gt_rttm} -s {cfg.hyp_rttm} > {cfg.score_file}", shell=True, ) assert result == 0, "The scoring step fail." with open(cfg.score_file) as file: lines = file.readlines() overall_lines = [line for line in lines if "OVERALL" in line] assert len(overall_lines) == 1 overall_line = overall_lines[0] overall_line = re.sub("\t+", " ", overall_line) overall_line = re.sub(" +", " ", overall_line) overall_der = float(overall_line.split(" ")[3]) # The overall der line should look like: # *** OVERALL *** DER JER ... return overall_der