runner: total_steps: 20000 gradient_clipping: 5 gradient_accumulate_steps: 2 log_step: 100 eval_step: 250 save_step: 500 max_keep: 1 eval_dataloaders: - dev - vcc2018_test - vcc2016_test optimizer: name: Adam lr: 1.0e-4 # comment the whole scheduler config block # to disable learning rate scheduling scheduler: name: linear_schedule_with_warmup num_warmup_steps: 500 downstream_expert: datarc: num_workers: 8 train_batch_size: 8 eval_batch_size: 12 vcc2018_file_path: /path/to/data/VCC_2018 vcc2016_file_path: /path/to/data/VCC_2016 modelrc: projector_dim: 256 clipping: True # If true, the model output will be restrict to the interval [1,5] using Tanh attention_pooling: True segment_weight: 1 bias_weight: 1