Initial commit
Browse files- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +1 -1
- a2c-AntBulletEnv-v0/data +17 -17
- a2c-AntBulletEnv-v0/policy.optimizer.pth +1 -1
- a2c-AntBulletEnv-v0/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 1753.30 +/- 354.24
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 129260
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c09127ca14e73c97f46f184ec0dbb7ce45cfefc2dc5cac3ae856784f82e57c3e
|
3 |
size 129260
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
@@ -64,7 +64,7 @@
|
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
"seed": null,
|
66 |
"action_noise": null,
|
67 |
-
"start_time":
|
68 |
"learning_rate": 0.00096,
|
69 |
"tensorboard_log": null,
|
70 |
"lr_schedule": {
|
@@ -73,7 +73,7 @@
|
|
73 |
},
|
74 |
"_last_obs": {
|
75 |
":type:": "<class 'numpy.ndarray'>",
|
76 |
-
":serialized:": "
|
77 |
},
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -81,7 +81,7 @@
|
|
81 |
},
|
82 |
"_last_original_obs": {
|
83 |
":type:": "<class 'numpy.ndarray'>",
|
84 |
-
":serialized:": "
|
85 |
},
|
86 |
"_episode_num": 0,
|
87 |
"use_sde": true,
|
@@ -89,7 +89,7 @@
|
|
89 |
"_current_progress_remaining": 0.0,
|
90 |
"ep_info_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
-
":serialized:": "
|
93 |
},
|
94 |
"ep_success_buffer": {
|
95 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fae46a79c10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fae46a79ca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fae46a79d30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fae46a79dc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fae46a79e50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fae46a79ee0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fae46a79f70>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fae46a7d040>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fae46a7d0d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fae46a7d160>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fae46a7d1f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fae46a7d280>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fae46a74840>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
|
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
"seed": null,
|
66 |
"action_noise": null,
|
67 |
+
"start_time": 1675060150960370490,
|
68 |
"learning_rate": 0.00096,
|
69 |
"tensorboard_log": null,
|
70 |
"lr_schedule": {
|
|
|
73 |
},
|
74 |
"_last_obs": {
|
75 |
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMCKRT+OrHc/4l6dvdzdAEBmRTM+Pe5MvpZf8T5e4q6/xVP8Phmtir8kkG29WijCP8k8KT9igfy/zWlBPyuWIEBLJCQ//FgfwKiCIz+y9rC+3exCv30JPsAYchs+yeUNv12/h78DwgDA2d3kPljQtL9brt0+jbfvvtz+Jj9OQeA/v7adPi+/fL+Qoqa82OOLvwgWKD+7QrU+zJKVPhiLEkDnGsA+nxg6v881PD+h1EG9jxl5P6+OZ7+VFvM9w5wxP4OOar+197Q8zX6IPscmmL9dv4e/QX7+Ptnd5D5Y0LS/vBBiP0Fhpj/7oyS/APGQP758wT3pow4/f/YNP1+bs7+maUw/TPSLP1K/DL8ImoE+voa4OvTpwD/pwOq8BudRP2ySzT8VeUC+O0WsPSORhj9p4GW/bLcgPyv3Tj+zFma+Xb+Hv0F+/j7TLA/AnTk1P7akwD4hopO+LEcqPypj3j9y95W//GmgP9Pimj6BzUi/OuFXPyhwTbywL6Y/CQgNPgNhRr7BTQLA1e6oPCZ3db/9Pue9eVftv1LbIj+1poC7Vl1qv1+8Mjwz8Fe/Mn3zvqljcT9Bfv4+2d3kPljQtL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
},
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
81 |
},
|
82 |
"_last_original_obs": {
|
83 |
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABfzse1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALUqmPQAAAAB2HeK/AAAAAEfcBT4AAAAAqGTaPwAAAADiBLO9AAAAACDS6D8AAAAA7EwGPQAAAADGjOK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ++TtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLad4j0AAAAAtmHfvwAAAABGUZg9AAAAADGK9j8AAAAAW6rGvQAAAAA3V9k/AAAAAPfRaj0AAAAAhdHkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4a0bUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAQXR89AAAAAJZD+L8AAAAAChcxPQAAAACklfY/AAAAAAgg7b0AAAAAKTj9PwAAAADKtki9AAAAAGpj6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj7jo2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3MPNvAAAAAAYuPi/AAAAAHMh8T0AAAAArvz9PwAAAAA4B7Y9AAAAAPs/6j8AAAAAZeLjPQAAAADU//W/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
},
|
86 |
"_episode_num": 0,
|
87 |
"use_sde": true,
|
|
|
89 |
"_current_progress_remaining": 0.0,
|
90 |
"ep_info_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJZizJCBwuOMAWyUTegDjAF0lEdAqDpMq2Bre3V9lChoBkdAlY8R4D9wWGgHTegDaAhHQKhAjR6Ww/x1fZQoaAZHQJvMfJT2nKpoB03oA2gIR0CoRRNEG7jDdX2UKGgGR0CZOBEAYHgQaAdN6ANoCEdAqEVxJoTPB3V9lChoBkdAm/mix3V092gHTegDaAhHQKhGrsLORkp1fZQoaAZHQJl7Vq+JxedoB03oA2gIR0CoTOoHC4z8dX2UKGgGR0CcW4fmcOLBaAdN6ANoCEdAqFFY1FYuCnV9lChoBkdAnRimnO0LMWgHTegDaAhHQKhRtiuMdcV1fZQoaAZHQJrw83Ns3yZoB03oA2gIR0CoUunLq2SddX2UKGgGR0Cd1QfwqiGnaAdN6ANoCEdAqFkdkz41xnV9lChoBkdAmpReFYdQwmgHTegDaAhHQKhdf6kZaV51fZQoaAZHQJ007mJWNm1oB03oA2gIR0CoXdq//NqydX2UKGgGR0Cfq2ZLZi/gaAdN6ANoCEdAqF8WJSBK+XV9lChoBkdAn6zWnKnvUmgHTegDaAhHQKhlL4/NZ/11fZQoaAZHQJ409syi22JoB03oA2gIR0Coabc8La24dX2UKGgGR0CdbmFCswL3aAdN6ANoCEdAqGoRRyfcvnV9lChoBkdAmsff6j323GgHTegDaAhHQKhrQ3dbgTB1fZQoaAZHQJfGBFXq7iBoB03oA2gIR0CocWpSzgMudX2UKGgGR0CaMvl/pdKNaAdN6ANoCEdAqHXq/mDDj3V9lChoBkdAnLOS4vvjO2gHTegDaAhHQKh2TjBl+Vl1fZQoaAZHQJbznw8W9DhoB03oA2gIR0Cod42Z7XxwdX2UKGgGR0CSG+vUBnzyaAdN6ANoCEdAqH3VAzHjqHV9lChoBkdAn6TMfq5byGgHTegDaAhHQKiCXeE7GNt1fZQoaAZHQJ4JCbtqpLpoB03oA2gIR0CogryGJvYOdX2UKGgGR0Cazrf+CK77aAdN6ANoCEdAqIPss8PnS3V9lChoBkdAoNlvms/6f2gHTegDaAhHQKiKJx82Ji11fZQoaAZHQKAazmI0qH5oB03oA2gIR0Cojp9KVY6odX2UKGgGR0CdeovDxb0OaAdN6ANoCEdAqI7856t1ZHV9lChoBkdAnZhv2Xb/O2gHTegDaAhHQKiQL2q1gIB1fZQoaAZHQJjrMtwrDqJoB03oA2gIR0Coln2M0gr6dX2UKGgGR0CVKgSmqHXVaAdN6ANoCEdAqJr96eGwinV9lChoBkdAmnmksJ6Y3WgHTegDaAhHQKibWWXTmXB1fZQoaAZHQJ0v9FmWdEtoB03oA2gIR0ConIzYEnstdX2UKGgGR0CZezpA2Q4kaAdN6ANoCEdAqKLobdadMHV9lChoBkdAnUn+rdWQwWgHTegDaAhHQKinZXtBv751fZQoaAZHQJq/cjSofjloB03oA2gIR0Cop70x/NJOdX2UKGgGR0Ce2qUX531SaAdN6ANoCEdAqKj5IOH313V9lChoBkdAnIR6YNRWLmgHTegDaAhHQKivM9FnZkF1fZQoaAZHQJgA+8brC3xoB03oA2gIR0Cos9CBXjlxdX2UKGgGR0Cc7SSaVlf7aAdN6ANoCEdAqLQpkqc3EXV9lChoBkdAmEokJng5zmgHTegDaAhHQKi1aqdYnv51fZQoaAZHQJ84x1r6+FloB03oA2gIR0Cou8KTbFjvdX2UKGgGR0CWAHNx2jfvaAdN6ANoCEdAqMBAEpy6tnV9lChoBkdAlhiX1rZam2gHTegDaAhHQKjAmymALAp1fZQoaAZHQJxnlRjz7MxoB03oA2gIR0CowcxpcophdX2UKGgGR0CcO87PIGQkaAdN6ANoCEdAqMgRtDUmUnV9lChoBkdAm56DER8MNWgHTegDaAhHQKjMsqjrRjV1fZQoaAZHQKA912dupCNoB03oA2gIR0CozQlAVwgldX2UKGgGR0CZaxUYsNDuaAdN6ANoCEdAqM5BcE/0NHV9lChoBkdAn39rXQMQVmgHTegDaAhHQKjUncvduYR1fZQoaAZHQJl/EtGus91oB03oA2gIR0Co2Ts+u/1ydX2UKGgGR0CeVRtITXaraAdN6ANoCEdAqNmdRvWH13V9lChoBkdAmVc1Muez2WgHTegDaAhHQKja21qFh5R1fZQoaAZHQJFrPE3sHB1oB03oA2gIR0Co4SPX9R77dX2UKGgGR0Cd7SgK4QSSaAdN6ANoCEdAqOXHiJfplnV9lChoBkdAm/4k6Lfk3mgHTegDaAhHQKjmJMotthx1fZQoaAZHQJ2otKwpvxZoB03oA2gIR0Co52jXe3x4dX2UKGgGR0CXJLdz4k/saAdN6ANoCEdAqO2qcXm/33V9lChoBkdAgWNk8JUo8mgHTegDaAhHQKjymuB+Wnl1fZQoaAZHQH+UX+VC5VhoB03oA2gIR0Co8wLvLHMmdX2UKGgGR0CaZdpjc2zfaAdN6ANoCEdAqPRE7KaG6HV9lChoBkdAkEVppaiblWgHTegDaAhHQKj7A0bcXWR1fZQoaAZHQJgsHlyR0U5oB03oA2gIR0Co/7MsxwhodX2UKGgGR0CME0MZP2wnaAdN6ANoCEdAqQAP3L3bmHV9lChoBkdAkJymGIsRQWgHTegDaAhHQKkBXfmcOLB1fZQoaAZHQJsTh98Z1mtoB03oA2gIR0CpB9YTsY2sdX2UKGgGR0CJ9Ix46fapaAdN6ANoCEdAqQyKF23az3V9lChoBkdAklNC3b212WgHTegDaAhHQKkM7BAv+Ox1fZQoaAZHQI3iT4rSVnpoB03oA2gIR0CpDkPBJqZddX2UKGgGR0CWcdz6rNnoaAdN6ANoCEdAqRSj2OAAhnV9lChoBkdAnSpyzHCGe2gHTegDaAhHQKkZNt9hJAd1fZQoaAZHQJxTsNRWLgpoB03oA2gIR0CpGZR6v7m/dX2UKGgGR0CD/MOUdJaraAdN6ANoCEdAqRrXY+Sr53V9lChoBkdAlvKE8aGYbGgHTegDaAhHQKkhPoduHet1fZQoaAZHQJpwBVsDW9VoB03oA2gIR0CpJe/GEPDpdX2UKGgGR0CTPL+sYEW7aAdN6ANoCEdAqSZPh60IC3V9lChoBkdAnuq32mHgxmgHTegDaAhHQKkni0rsjVx1fZQoaAZHQJtvciA2AG1oB03oA2gIR0CpLggKnei0dX2UKGgGR0CNXmsGPgejaAdN6ANoCEdAqTLCN2ki2XV9lChoBkdAlVjJpSJj2GgHTegDaAhHQKkzHsdDIBB1fZQoaAZHQJ0mmbrkbP1oB03oA2gIR0CpNF5RTCLudX2UKGgGR0COfC2aUiY+aAdN6ANoCEdAqTrklolD4XV9lChoBkdAhjsBR64Ue2gHTegDaAhHQKk/kdGy5Zt1fZQoaAZHQInLvRmbsnloB03oA2gIR0CpP+wfIS13dX2UKGgGR0CQvUmzSkTIaAdN6ANoCEdAqUEu56MR6HV9lChoBkdAfuR56dDpkmgHTegDaAhHQKlHkDe0ojR1fZQoaAZHQJa2l7LMcIZoB03oA2gIR0CpTCzAvcrRdX2UKGgGR0CX5rbKRuCPaAdN6ANoCEdAqUyLMV1wHnV9lChoBkdAmZTRdQfp2WgHTegDaAhHQKlNxJJ5E+h1fZQoaAZHQJ0lvUF0PpZoB03oA2gIR0CpVBrOzIFNdX2UKGgGR0CY+eNLUTcqaAdN6ANoCEdAqVi3ci4axXV9lChoBkdAmw3OfZmI02gHTegDaAhHQKlZFoicG1R1fZQoaAZHQJyWRkkKNQ1oB03oA2gIR0CpWlEkSmIkdX2UKGgGR0CaB3Gxlg+haAdN6ANoCEdAqWDJ73PAwnV9lChoBkdAmm4MgIQe3mgHTegDaAhHQKllZio86mx1fZQoaAZHQJMcxDJEH+toB03oA2gIR0CpZcFqi48VdX2UKGgGR0CbhNTER8MNaAdN6ANoCEdAqWb7shPj43V9lChoBkdAhNTqOT7l72gHTegDaAhHQKltYnSfDk51fZQoaAZHQJcpBrP+n65oB03oA2gIR0Cpce/zz3AVdX2UKGgGR0CbD35e7cwhaAdN6ANoCEdAqXJKMLncL3VlLg=="
|
93 |
},
|
94 |
"ep_success_buffer": {
|
95 |
":type:": "<class 'collections.deque'>",
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56190
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8aae4a270f1999dc6c3c252502726955d3bf7dcdbf164948b45e5e786a8ff0c
|
3 |
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56958
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:100c02b1675aee028dc0e9c94834b37169a5c1f16da24ec1294536ffc8e6c4a8
|
3 |
size 56958
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eff8d54ff70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff8d554040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff8d5540d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff8d554160>", "_build": "<function ActorCriticPolicy._build at 0x7eff8d5541f0>", "forward": "<function ActorCriticPolicy.forward at 0x7eff8d554280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eff8d554310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff8d5543a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7eff8d554430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff8d5544c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff8d554550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff8d5545e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7eff8d54e7b0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674626280336185171, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADswtb1/eL0+8vRHPwyqkD+sZzW/rvUcwI8gQj6cAww/+WciPwg7Zr9ywae+rVIrwPkqj7/vtFg/whj5vnAJrTyYOnA9fTG3Pym+bbl2aKw/KVmnPbGjt73BwYK/4s4iP17UND/W0Lw+ucEIP2Gznr/Ar3G9akk1P+5VPj9932i/79VUv0BL1L++h6g+prGxPbuq4DyIqRe/ieOBPlZ55b/z5lu+hVX7vE2eVL7sXjLAkK38vr+R8D8FcJI+iSnPvl6p5jzIxvE/o+OKvwbHVbxe1DQ/1tC8PrnBCD9hs56/C35DP9ohuz6v40c/MEJTvinPrr3raTjAVv5nPOubEb5j7x8/u0iiv+QkDj/M8ynAjz+Pvq4FBz82bK++qcAkwEJP375cRyZAYGiGvYrFbD9//Zg/LcyCP0j3ir8iXi28XtQ0P9bQvD6im++/YbOev3UWOj8BVpK/XG80v1bRFD8PUSHAggG+viclGb9xqcA+7NmFP/sFrr5jz1a+FbmuvurU679mTTU/HzsHvpKBHL8VzAY+HryKP4OOk78Bcje//CdbvpMxwT9WfIy/PvWiPV7UND/W0Lw+ucEIP2Gznr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADIGL61AACAPwAAAAAAAAAAAAAAAAAAAAAAAACABDbfvQAAAADXyNq/AAAAAOud1TwAAAAAGMHePwAAAADf5Ja9AAAAAFDM5z8AAAAAodL3PQAAAADDpN2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjq40NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAq2aTwAAAAA+drxvwAAAADKOjE9AAAAAOWJ9D8AAAAAt2e6PAAAAAAhEuo/AAAAAFxDhr0AAAAA22bgvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGPCjDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB0fR29AAAAAIGH/L8AAAAA85L9vQAAAABb/vA/AAAAALAYBzwAAAAA8H70PwAAAAC9Xve9AAAAAD2R578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgyfa1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAllCgvQAAAACvdO6/AAAAAFdSAL4AAAAA8Wb5PwAAAAD1PpI9AAAAAHC74T8AAAAAsBrVPQAAAADcqNq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJeSao4uK4yMAWyUTegDjAF0lEdAqAzT0Yj0MHV9lChoBkdAlquSEDhcaGgHTegDaAhHQKgOxuFYdQx1fZQoaAZHQJkOGax5cC5oB03oA2gIR0CoDwqbz9S/dX2UKGgGR0CYajdU83dcaAdN6ANoCEdAqBETuWrwOXV9lChoBkdAmD1AZCOWB2gHTegDaAhHQKgZNCoCMgl1fZQoaAZHQJevnqPfbbloB03oA2gIR0CoGzSHuZ1FdX2UKGgGR0CYLC5SFXaKaAdN6ANoCEdAqBt6CWeHz3V9lChoBkdAl7WHbRF7U2gHTegDaAhHQKgdnMB6rvN1fZQoaAZHQJkyNqFh5PdoB03oA2gIR0CoJe0Q9RrKdX2UKGgGR0CaGeVZLZi/aAdN6ANoCEdAqCgDcXWOInV9lChoBkdAmkWAHAymAWgHTegDaAhHQKgoSpMpPRB1fZQoaAZHQJot+RZEDyRoB03oA2gIR0CoKmdy1eBydX2UKGgGR0Cb4+1/Ue+3aAdN6ANoCEdAqDKUqWkadnV9lChoBkdAmvNtMwlByGgHTegDaAhHQKg0rPnB+F11fZQoaAZHQJq2iOcUdrBoB03oA2gIR0CoNPEC/47BdX2UKGgGR0CbpnMvysjnaAdN6ANoCEdAqDcLIPsiS3V9lChoBkdAmfpktZmqYWgHTegDaAhHQKg/GVO9FnZ1fZQoaAZHQJgKWApazNVoB03oA2gIR0CoQRXH7xd6dX2UKGgGR0CZezZRbbDeaAdN6ANoCEdAqEFbXOGCZnV9lChoBkdAmjWLDhtLtmgHTegDaAhHQKhDbtygf2d1fZQoaAZHQJyarFsHjZNoB03oA2gIR0CoS6adlNDddX2UKGgGR0CbQjpzLfUGaAdN6ANoCEdAqE2ikGiYcHV9lChoBkdAnCy8K9f1H2gHTegDaAhHQKhN6TCcf/51fZQoaAZHQJmYV/smfGxoB03oA2gIR0CoT/0QkHD8dX2UKGgGR0Ca8b2cawUyaAdN6ANoCEdAqFfvA0sOG3V9lChoBkdAnGojOkcjq2gHTegDaAhHQKhZ9YxL0z11fZQoaAZHQJ0hLSE12q1oB03oA2gIR0CoWjmRNh3JdX2UKGgGR0CbGb6+FlCkaAdN6ANoCEdAqFxpgogFHXV9lChoBkdAm6ngbZOBUmgHTegDaAhHQKhkc6cRUWF1fZQoaAZHQJ0yDWz4UN9oB03oA2gIR0CoZoNT1kDqdX2UKGgGR0Cbi2RJVbRnaAdN6ANoCEdAqGbHDaXa8HV9lChoBkdAnCuLGR3eN2gHTegDaAhHQKho3fMwDeV1fZQoaAZHQJiLbIYFaB9oB03oA2gIR0CocPQztTkydX2UKGgGR0CZKUqcmShbaAdN6ANoCEdAqHLr8R+SbHV9lChoBkdAmGWAF9roGWgHTegDaAhHQKhzMDAaef91fZQoaAZHQJq/p0W/JvJoB03oA2gIR0CodVNY0VJudX2UKGgGR0CWZLNg0CRwaAdN6ANoCEdAqH1sd1dPcnV9lChoBkdAk/tkZBLPEGgHTegDaAhHQKh/aSdOIqN1fZQoaAZHQJbvmUB4lhRoB03oA2gIR0Cof7YnndO7dX2UKGgGR0CRmIo0ALiNaAdN6ANoCEdAqIHVE/jbSXV9lChoBkdAlRYVrl/6PGgHTegDaAhHQKiJ9NATqSp1fZQoaAZHQJJnj4HoouxoB03oA2gIR0Coi/g7xNItdX2UKGgGR0CPCHf642CNaAdN6ANoCEdAqIw9uP3i73V9lChoBkdAlk+COFQEZGgHTegDaAhHQKiOVGjsUqR1fZQoaAZHQJSkuQXAM2FoB03oA2gIR0CollhRZU1idX2UKGgGR0CT6wpKBd2QaAdN6ANoCEdAqJhudK/VRXV9lChoBkdAlMM+85CF9WgHTegDaAhHQKiYvuCwr2B1fZQoaAZHQJWljhrFfiRoB03oA2gIR0ComtdBKL88dX2UKGgGR0CUzZ/1QIldaAdN6ANoCEdAqKML3XZoPHV9lChoBkdAmMOHJgb6xmgHTegDaAhHQKilDS1E3Kl1fZQoaAZHQJiDSNm16VtoB03oA2gIR0CopVAZjx0/dX2UKGgGR0CYQDsjVx0daAdN6ANoCEdAqKdvR7Z393V9lChoBkdAlkUSB5HEuWgHTegDaAhHQKivblqagEl1fZQoaAZHQJZt8hhYvFpoB03oA2gIR0CosW2kSElFdX2UKGgGR0CWylgqVhTgaAdN6ANoCEdAqLG2uV5a/3V9lChoBkdAl2AEjkdWAGgHTegDaAhHQKiz4uFpPAR1fZQoaAZHQIjFcuL74ztoB03oA2gIR0Cou+Z1Ng0CdX2UKGgGR0CT5Qthd+ocaAdN6ANoCEdAqL4B8x9G7XV9lChoBkdAl8d+rU9ZBGgHTegDaAhHQKi+SQCjk+51fZQoaAZHQJi5l+c6Nl1oB03oA2gIR0CowFy4e9zwdX2UKGgGR0CYXABo24usaAdN6ANoCEdAqMhq1XvH93V9lChoBkdAl2beVs1sL2gHTegDaAhHQKjKb2HLzPN1fZQoaAZHQJgfgkyDZlFoB03oA2gIR0CoyrKrR0EHdX2UKGgGR0CZJSsp5NXYaAdN6ANoCEdAqMy4TRIBinV9lChoBkdAmbmSnYQJ5WgHTegDaAhHQKjUsYv38Gd1fZQoaAZHQJg8+Ebo8p1oB03oA2gIR0Co1qpe3QUpdX2UKGgGR0CYm0QyyleoaAdN6ANoCEdAqNbq48U21nV9lChoBkdAmIfuhwl0HWgHTegDaAhHQKjY9ePaL4x1fZQoaAZHQJpzys90RvpoB03oA2gIR0Co4T0M5OrRdX2UKGgGR0CZ06pmEoOQaAdN6ANoCEdAqONos3AEdXV9lChoBkdAmqJkJfICEGgHTegDaAhHQKjjrU4rBj51fZQoaAZHQJpbawmmce9oB03oA2gIR0Co5boUi6g/dX2UKGgGR0CVrySc9W6taAdN6ANoCEdAqO3HW4EwFnV9lChoBkdAmb6K06YE4mgHTegDaAhHQKjvz1U2kzp1fZQoaAZHQJm+jqt5le5oB03oA2gIR0Co8BjWCmMwdX2UKGgGR0CZ/1kOZssQaAdN6ANoCEdAqPIgNb1RL3V9lChoBkdAmkTB1LamGmgHTegDaAhHQKj6SNPP9k11fZQoaAZHQJu6SeqaPS5oB03oA2gIR0Co/EChFmWddX2UKGgGR0CbpTw3HaN/aAdN6ANoCEdAqPyHzMA3k3V9lChoBkdAm8XzOs1baGgHTegDaAhHQKj+lRnezld1fZQoaAZHQJtiXAP/aQFoB03oA2gIR0CpBqENnXd1dX2UKGgGR0CaXfaEzwc6aAdN6ANoCEdAqQizS/j81nV9lChoBkdAmz/7BbfP5mgHTegDaAhHQKkI+A5q/M51fZQoaAZHQJtqHWMCLdhoB03oA2gIR0CpCw5vkzXSdX2UKGgGR0CV32PX05EMaAdN6ANoCEdAqRM21fE4vXV9lChoBkdAmff9A9mpVGgHTegDaAhHQKkVNRQaaTh1fZQoaAZHQJwBS0NSZShoB03oA2gIR0CpFXmQr+YMdX2UKGgGR0Caibcry1/laAdN6ANoCEdAqRex26kIonV9lChoBkdAnR+wiml67mgHTegDaAhHQKkf4S13MZB1fZQoaAZHQJtCLiVB2OhoB03oA2gIR0CpIekUCaJAdX2UKGgGR0CbXWrIHTqjaAdN6ANoCEdAqSIz9sJpnHV9lChoBkdAnAG2R3eN1mgHTegDaAhHQKkkX/rB0p51fZQoaAZHQJH/3eCTUy5oB03oA2gIR0CpLHdadMCcdX2UKGgGR0CPfddonKGMaAdN6ANoCEdAqS5+CNCJGnV9lChoBkdAksEcrupjt2gHTegDaAhHQKkuwfq5byJ1fZQoaAZHQIYi+5paibloB03oA2gIR0CpMNDgAIY4dX2UKGgGR0CQKMxSpBHDaAdN6ANoCEdAqTj0hmoR7XV9lChoBkdAl9175hz/62gHTegDaAhHQKk69EDyOJd1fZQoaAZHQJV2dUedTYNoB03oA2gIR0CpOznGS6lMdX2UKGgGR0CapNrmQr+YaAdN6ANoCEdAqT1BuCPIXHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fae46a79c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fae46a79ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fae46a79d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fae46a79dc0>", "_build": "<function ActorCriticPolicy._build at 0x7fae46a79e50>", "forward": "<function ActorCriticPolicy.forward at 0x7fae46a79ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fae46a79f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fae46a7d040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fae46a7d0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fae46a7d160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fae46a7d1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fae46a7d280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fae46a74840>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675060150960370490, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMCKRT+OrHc/4l6dvdzdAEBmRTM+Pe5MvpZf8T5e4q6/xVP8Phmtir8kkG29WijCP8k8KT9igfy/zWlBPyuWIEBLJCQ//FgfwKiCIz+y9rC+3exCv30JPsAYchs+yeUNv12/h78DwgDA2d3kPljQtL9brt0+jbfvvtz+Jj9OQeA/v7adPi+/fL+Qoqa82OOLvwgWKD+7QrU+zJKVPhiLEkDnGsA+nxg6v881PD+h1EG9jxl5P6+OZ7+VFvM9w5wxP4OOar+197Q8zX6IPscmmL9dv4e/QX7+Ptnd5D5Y0LS/vBBiP0Fhpj/7oyS/APGQP758wT3pow4/f/YNP1+bs7+maUw/TPSLP1K/DL8ImoE+voa4OvTpwD/pwOq8BudRP2ySzT8VeUC+O0WsPSORhj9p4GW/bLcgPyv3Tj+zFma+Xb+Hv0F+/j7TLA/AnTk1P7akwD4hopO+LEcqPypj3j9y95W//GmgP9Pimj6BzUi/OuFXPyhwTbywL6Y/CQgNPgNhRr7BTQLA1e6oPCZ3db/9Pue9eVftv1LbIj+1poC7Vl1qv1+8Mjwz8Fe/Mn3zvqljcT9Bfv4+2d3kPljQtL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABfzse1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALUqmPQAAAAB2HeK/AAAAAEfcBT4AAAAAqGTaPwAAAADiBLO9AAAAACDS6D8AAAAA7EwGPQAAAADGjOK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ++TtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLad4j0AAAAAtmHfvwAAAABGUZg9AAAAADGK9j8AAAAAW6rGvQAAAAA3V9k/AAAAAPfRaj0AAAAAhdHkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4a0bUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAQXR89AAAAAJZD+L8AAAAAChcxPQAAAACklfY/AAAAAAgg7b0AAAAAKTj9PwAAAADKtki9AAAAAGpj6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj7jo2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3MPNvAAAAAAYuPi/AAAAAHMh8T0AAAAArvz9PwAAAAA4B7Y9AAAAAPs/6j8AAAAAZeLjPQAAAADU//W/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJZizJCBwuOMAWyUTegDjAF0lEdAqDpMq2Bre3V9lChoBkdAlY8R4D9wWGgHTegDaAhHQKhAjR6Ww/x1fZQoaAZHQJvMfJT2nKpoB03oA2gIR0CoRRNEG7jDdX2UKGgGR0CZOBEAYHgQaAdN6ANoCEdAqEVxJoTPB3V9lChoBkdAm/mix3V092gHTegDaAhHQKhGrsLORkp1fZQoaAZHQJl7Vq+JxedoB03oA2gIR0CoTOoHC4z8dX2UKGgGR0CcW4fmcOLBaAdN6ANoCEdAqFFY1FYuCnV9lChoBkdAnRimnO0LMWgHTegDaAhHQKhRtiuMdcV1fZQoaAZHQJrw83Ns3yZoB03oA2gIR0CoUunLq2SddX2UKGgGR0Cd1QfwqiGnaAdN6ANoCEdAqFkdkz41xnV9lChoBkdAmpReFYdQwmgHTegDaAhHQKhdf6kZaV51fZQoaAZHQJ007mJWNm1oB03oA2gIR0CoXdq//NqydX2UKGgGR0Cfq2ZLZi/gaAdN6ANoCEdAqF8WJSBK+XV9lChoBkdAn6zWnKnvUmgHTegDaAhHQKhlL4/NZ/11fZQoaAZHQJ409syi22JoB03oA2gIR0Coabc8La24dX2UKGgGR0CdbmFCswL3aAdN6ANoCEdAqGoRRyfcvnV9lChoBkdAmsff6j323GgHTegDaAhHQKhrQ3dbgTB1fZQoaAZHQJfGBFXq7iBoB03oA2gIR0CocWpSzgMudX2UKGgGR0CaMvl/pdKNaAdN6ANoCEdAqHXq/mDDj3V9lChoBkdAnLOS4vvjO2gHTegDaAhHQKh2TjBl+Vl1fZQoaAZHQJbznw8W9DhoB03oA2gIR0Cod42Z7XxwdX2UKGgGR0CSG+vUBnzyaAdN6ANoCEdAqH3VAzHjqHV9lChoBkdAn6TMfq5byGgHTegDaAhHQKiCXeE7GNt1fZQoaAZHQJ4JCbtqpLpoB03oA2gIR0CogryGJvYOdX2UKGgGR0Cazrf+CK77aAdN6ANoCEdAqIPss8PnS3V9lChoBkdAoNlvms/6f2gHTegDaAhHQKiKJx82Ji11fZQoaAZHQKAazmI0qH5oB03oA2gIR0Cojp9KVY6odX2UKGgGR0CdeovDxb0OaAdN6ANoCEdAqI7856t1ZHV9lChoBkdAnZhv2Xb/O2gHTegDaAhHQKiQL2q1gIB1fZQoaAZHQJjrMtwrDqJoB03oA2gIR0Coln2M0gr6dX2UKGgGR0CVKgSmqHXVaAdN6ANoCEdAqJr96eGwinV9lChoBkdAmnmksJ6Y3WgHTegDaAhHQKibWWXTmXB1fZQoaAZHQJ0v9FmWdEtoB03oA2gIR0ConIzYEnstdX2UKGgGR0CZezpA2Q4kaAdN6ANoCEdAqKLobdadMHV9lChoBkdAnUn+rdWQwWgHTegDaAhHQKinZXtBv751fZQoaAZHQJq/cjSofjloB03oA2gIR0Cop70x/NJOdX2UKGgGR0Ce2qUX531SaAdN6ANoCEdAqKj5IOH313V9lChoBkdAnIR6YNRWLmgHTegDaAhHQKivM9FnZkF1fZQoaAZHQJgA+8brC3xoB03oA2gIR0Cos9CBXjlxdX2UKGgGR0Cc7SSaVlf7aAdN6ANoCEdAqLQpkqc3EXV9lChoBkdAmEokJng5zmgHTegDaAhHQKi1aqdYnv51fZQoaAZHQJ84x1r6+FloB03oA2gIR0Cou8KTbFjvdX2UKGgGR0CWAHNx2jfvaAdN6ANoCEdAqMBAEpy6tnV9lChoBkdAlhiX1rZam2gHTegDaAhHQKjAmymALAp1fZQoaAZHQJxnlRjz7MxoB03oA2gIR0CowcxpcophdX2UKGgGR0CcO87PIGQkaAdN6ANoCEdAqMgRtDUmUnV9lChoBkdAm56DER8MNWgHTegDaAhHQKjMsqjrRjV1fZQoaAZHQKA912dupCNoB03oA2gIR0CozQlAVwgldX2UKGgGR0CZaxUYsNDuaAdN6ANoCEdAqM5BcE/0NHV9lChoBkdAn39rXQMQVmgHTegDaAhHQKjUncvduYR1fZQoaAZHQJl/EtGus91oB03oA2gIR0Co2Ts+u/1ydX2UKGgGR0CeVRtITXaraAdN6ANoCEdAqNmdRvWH13V9lChoBkdAmVc1Muez2WgHTegDaAhHQKja21qFh5R1fZQoaAZHQJFrPE3sHB1oB03oA2gIR0Co4SPX9R77dX2UKGgGR0Cd7SgK4QSSaAdN6ANoCEdAqOXHiJfplnV9lChoBkdAm/4k6Lfk3mgHTegDaAhHQKjmJMotthx1fZQoaAZHQJ2otKwpvxZoB03oA2gIR0Co52jXe3x4dX2UKGgGR0CXJLdz4k/saAdN6ANoCEdAqO2qcXm/33V9lChoBkdAgWNk8JUo8mgHTegDaAhHQKjymuB+Wnl1fZQoaAZHQH+UX+VC5VhoB03oA2gIR0Co8wLvLHMmdX2UKGgGR0CaZdpjc2zfaAdN6ANoCEdAqPRE7KaG6HV9lChoBkdAkEVppaiblWgHTegDaAhHQKj7A0bcXWR1fZQoaAZHQJgsHlyR0U5oB03oA2gIR0Co/7MsxwhodX2UKGgGR0CME0MZP2wnaAdN6ANoCEdAqQAP3L3bmHV9lChoBkdAkJymGIsRQWgHTegDaAhHQKkBXfmcOLB1fZQoaAZHQJsTh98Z1mtoB03oA2gIR0CpB9YTsY2sdX2UKGgGR0CJ9Ix46fapaAdN6ANoCEdAqQyKF23az3V9lChoBkdAklNC3b212WgHTegDaAhHQKkM7BAv+Ox1fZQoaAZHQI3iT4rSVnpoB03oA2gIR0CpDkPBJqZddX2UKGgGR0CWcdz6rNnoaAdN6ANoCEdAqRSj2OAAhnV9lChoBkdAnSpyzHCGe2gHTegDaAhHQKkZNt9hJAd1fZQoaAZHQJxTsNRWLgpoB03oA2gIR0CpGZR6v7m/dX2UKGgGR0CD/MOUdJaraAdN6ANoCEdAqRrXY+Sr53V9lChoBkdAlvKE8aGYbGgHTegDaAhHQKkhPoduHet1fZQoaAZHQJpwBVsDW9VoB03oA2gIR0CpJe/GEPDpdX2UKGgGR0CTPL+sYEW7aAdN6ANoCEdAqSZPh60IC3V9lChoBkdAnuq32mHgxmgHTegDaAhHQKkni0rsjVx1fZQoaAZHQJtvciA2AG1oB03oA2gIR0CpLggKnei0dX2UKGgGR0CNXmsGPgejaAdN6ANoCEdAqTLCN2ki2XV9lChoBkdAlVjJpSJj2GgHTegDaAhHQKkzHsdDIBB1fZQoaAZHQJ0mmbrkbP1oB03oA2gIR0CpNF5RTCLudX2UKGgGR0COfC2aUiY+aAdN6ANoCEdAqTrklolD4XV9lChoBkdAhjsBR64Ue2gHTegDaAhHQKk/kdGy5Zt1fZQoaAZHQInLvRmbsnloB03oA2gIR0CpP+wfIS13dX2UKGgGR0CQvUmzSkTIaAdN6ANoCEdAqUEu56MR6HV9lChoBkdAfuR56dDpkmgHTegDaAhHQKlHkDe0ojR1fZQoaAZHQJa2l7LMcIZoB03oA2gIR0CpTCzAvcrRdX2UKGgGR0CX5rbKRuCPaAdN6ANoCEdAqUyLMV1wHnV9lChoBkdAmZTRdQfp2WgHTegDaAhHQKlNxJJ5E+h1fZQoaAZHQJ0lvUF0PpZoB03oA2gIR0CpVBrOzIFNdX2UKGgGR0CY+eNLUTcqaAdN6ANoCEdAqVi3ci4axXV9lChoBkdAmw3OfZmI02gHTegDaAhHQKlZFoicG1R1fZQoaAZHQJyWRkkKNQ1oB03oA2gIR0CpWlEkSmIkdX2UKGgGR0CaB3Gxlg+haAdN6ANoCEdAqWDJ73PAwnV9lChoBkdAmm4MgIQe3mgHTegDaAhHQKllZio86mx1fZQoaAZHQJMcxDJEH+toB03oA2gIR0CpZcFqi48VdX2UKGgGR0CbhNTER8MNaAdN6ANoCEdAqWb7shPj43V9lChoBkdAhNTqOT7l72gHTegDaAhHQKltYnSfDk51fZQoaAZHQJcpBrP+n65oB03oA2gIR0Cpce/zz3AVdX2UKGgGR0CbD35e7cwhaAdN6ANoCEdAqXJKMLncL3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a63668384c869f99260b43139fe12b55db297dbb8cc371fe4cddee4aba5f8fd5
|
3 |
+
size 1099376
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 1753.2988598564596, "std_reward": 354.24183528857264, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-30T07:24:26.665610"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2136
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5533dd16d6e88ccf3b16dddfa27f9d1164af2f4c8d3b66c38b74dcf910ee6d6c
|
3 |
size 2136
|