File size: 14,554 Bytes
580af9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import os
import glob
import json
import torch
import shutil
import numpy as np
from pathlib import Path
#from transformers import AutoModelForCausalLM, AutoTokenizer
from safetensors.torch import safe_open, save_file

from typing import Any, Dict, List, Optional, Union

# interpolation from mergekit
# thanks charles!
def normalize(v: np.ndarray, eps: float):
    norm_v = np.linalg.norm(v)
    if norm_v > eps:
        v = v / norm_v
    return v

def lerp(
    t: float, v0: Union[np.ndarray, torch.Tensor], v1: Union[np.ndarray, torch.Tensor]
) -> Union[np.ndarray, torch.Tensor]:
    return (1 - t) * v0 + t * v1

def slerp(
    t: Union[float, np.ndarray],
    v0: Union[np.ndarray, torch.Tensor],
    v1: Union[np.ndarray, torch.Tensor],
    DOT_THRESHOLD: float = 0.9995,
    eps: float = 1e-8,
):
    """
    Spherical linear interpolation

    From: https://gist.github.com/dvschultz/3af50c40df002da3b751efab1daddf2c
    Args:
        t (float/np.ndarray): Float value between 0.0 and 1.0
        v0 (np.ndarray): Starting vector
        v1 (np.ndarray): Final vector
        DOT_THRESHOLD (float): Threshold for considering the two vectors as
                               colinear. Not recommended to alter this.
    Returns:
        v2 (np.ndarray): Interpolation vector between v0 and v1
    """
    is_torch = False
    if not isinstance(v0, np.ndarray):
        is_torch = True
        v0 = v0.detach().cpu().float().numpy()
    if not isinstance(v1, np.ndarray):
        is_torch = True
        v1 = v1.detach().cpu().float().numpy()

    # Copy the vectors to reuse them later
    v0_copy = np.copy(v0)
    v1_copy = np.copy(v1)

    # Normalize the vectors to get the directions and angles
    v0 = normalize(v0, eps)
    v1 = normalize(v1, eps)

    # Dot product with the normalized vectors (can't use np.dot in W)
    dot = np.sum(v0 * v1)

    # If absolute value of dot product is almost 1, vectors are ~colinear, so use lerp
    if np.abs(dot) > DOT_THRESHOLD:
        res = lerp(t, v0_copy, v1_copy)
        return maybe_torch(res, is_torch)

    # Calculate initial angle between v0 and v1
    theta_0 = np.arccos(dot)
    sin_theta_0 = np.sin(theta_0)

    # Angle at timestep t
    theta_t = theta_0 * t
    sin_theta_t = np.sin(theta_t)

    # Finish the slerp algorithm
    s0 = np.sin(theta_0 - theta_t) / sin_theta_0
    s1 = sin_theta_t / sin_theta_0
    res = s0 * v0_copy + s1 * v1_copy

    return maybe_torch(res, is_torch)


def maybe_torch(v: np.ndarray, is_torch: bool):
    if is_torch:
        return torch.from_numpy(v)
    return v


# move layer indices backwards to make room for inserted layer
def move_layer_back(model_dict, num_hidden_layers, layer_keys, layer_num, t):
    # just rename the keys
    print(f"move_layer_back {layer_keys[layer_num]}")

    d = []
    for k in layer_keys[layer_num]:
        tensor = model_dict[k]

        # loop backwards through the layers, increasing the index
        # by one until the insertion layer has been reached
        # model.layers.0.mlp.down_proj -> model.layers.1.mlp.down_proj
        # .weight + .bias (for qwen)

        if k.startswith(f'model.layers.{layer_num}.'):
            tensor_suffix = k[len(f'model.layers.{layer_num}.'):]
            tensor_cur_prefix = f'model.layers.{layer_num}.'
            tensor_next_prefix = f'model.layers.{layer_num+1}.'
            tensor_prev_prefix = f'model.layers.{layer_num-1}.'

            model_dict[tensor_next_prefix + tensor_suffix] = tensor
            del model_dict[k]

            d.append(tensor_next_prefix + tensor_suffix)

    #print(layer_keys[layer_num])
    layer_keys[layer_num+1] = d
    #print(layer_keys[layer_num+1])

    #import pprint
    #pprint.pp(model_dict)

# given a dict of tensors, a key, and layer_num,
# return the tensor at previous layer's version of key
def get_prev_tensor(model_dict, key, layer_num):
    if key.startswith(f'model.layers.{layer_num}.'):
        suffix = key[len(f'model.layers.{layer_num}.'):]
        cur_prefix = f'model.layers.{layer_num}.'
        prev_prefix = f'model.layers.{layer_num-1}.'
        return model_dict[prev_prefix + suffix]
    return None

# given a dict of tensors, a key, and layer_num,
# return the tensor at the next layer's version of key
def get_next_tensor(model_dict, key, layer_num):
    if key.startswith(f'model.layers.{layer_num}.'):
        suffix = key[len(f'model.layers.{layer_num}.'):]
        cur_prefix = f'model.layers.{layer_num}.'
        next_prefix = f'model.layers.{layer_num+1}.'
        return model_dict[next_prefix + suffix]
    return None

def insert_layer(model_dict, num_hidden_layers, layer_keys, layer_num, t=0.5, out_scale=0.4, scale=None):
    print(f"inserting layer between {layer_num-1} and {layer_num} [t={t}]")

    # need to move all layers after the insertion point
    for i in range(num_hidden_layers, layer_num, -1):
        #print(i)
        move_layer_back(model_dict, num_hidden_layers, layer_keys, i - 1, t)


    # now merge layer+1 with layer-1 and save to layer
    # (because everything got moved back)

    for k in layer_keys[layer_num]:
        #print(k)
        tensor = get_next_tensor(model_dict, k, layer_num)
        prev_tensor = get_prev_tensor(model_dict, k, layer_num)
        merge_tensor = lerp(t, prev_tensor, tensor)
        if scale is not None:
            merge_tensor = merge_tensor * scale
        print(f"merging {layer_num-1} w/ {layer_num+1}")
        #merge_tensor = slerp(t, prev_tensor, tensor)
        if k.endswith("mlp.down_proj.weight"):
            merge_tensor = merge_tensor*out_scale
        if k.endswith("mlp.o_proj.weight"):
            merge_tensor = merge_tensor*out_scale
        if k.endswith(".bias"):
            merge_tensor = merge_tensor*out_scale

        model_dict[k] = merge_tensor

def get_dtype_size_in_bytes(tensor):
    dtype = tensor.dtype
    if dtype == torch.float32:
        size_in_bytes = tensor.numel() * 4
    elif dtype == torch.float64:
        size_in_bytes = tensor.numel() * 8
    elif dtype == torch.int32:
        size_in_bytes = tensor.numel() * 4
    elif dtype == torch.int64:
        size_in_bytes = tensor.numel() * 8
    elif dtype == torch.bool:
        size_in_bytes = tensor.numel() * 1
    else:
        size_in_bytes = 0
    return size_in_bytes

model_name = 'BAAI/Emu3-Gen'
dir_name = './'
#dir_name = None
conf = {}

with open(Path(dir_name or model_name) / 'config.json') as f:
    conf = json.load(f)

st_dict = {}
tensor_dict = {}

if (Path(dir_name) / 'model.safetensors.index.json').is_file():
    with open(Path(dir_name or model_name) / 'model.safetensors.index.json') as f:
        st_index = json.load(f)
        tensors = st_index['weight_map'].keys()
        files = []
        for name in tensors:
            if st_index['weight_map'][name] not in files:
                files.append(st_index['weight_map'][name])
        #print(files)
        for st in files:
            tensor_dict = safe_open(st, framework='pt')
            for k in tensor_dict.keys():
                st_dict[k] = tensor_dict.get_tensor(k)
        #print(st_dict)


        

elif (Path(dir_name) / 'model.safetensors').is_file():
    model_fn = 'model.safetensors'
    tensor_dict = safe_open(model_fn, framework='pt')
    for k in tensor_dict.keys():
        st_dict[k] = tensor_dict.get_tensor(k)
    file_dict = {'model.safetensors': st_dict}
else:
    print("please convert to safetensors")
    sys.exit(-1)

print(conf)
num_hidden_layers = conf['num_hidden_layers']
print(num_hidden_layers)

model = {}
#sys.exit(-1)

#for k in tensor_dict.keys():
    #model[k] = tensor_dict.get_tensor(k)


#print(tensor_dict.keys())
#import pprint
#pprint.pp(model)

#layer = 0
layer_keys = {}

for layer in range(num_hidden_layers):
    #layer_keys[layer] = [k for k in sorted(tensor_dict.keys()) if k.startswith(f'model.layers.{layer}.')]
    layer_keys[layer] = [k for k in sorted(st_dict.keys()) if k.startswith(f'model.layers.{layer}.')]

for k in layer_keys.keys():
    print(f"Layer {k}")
    print(layer_keys[k])
    print("")

insert_layer(st_dict, num_hidden_layers, layer_keys, 24, 0.5, 0.35, scale=None)
num_hidden_layers += 1
insert_layer(st_dict, num_hidden_layers, layer_keys, 23, 0.5, 0.35, scale=None)
num_hidden_layers += 1
insert_layer(st_dict, num_hidden_layers, layer_keys, 22, 0.5, 0.35, scale=None)
num_hidden_layers += 1
insert_layer(st_dict, num_hidden_layers, layer_keys, 16, 0.5, 0.35, scale=None)
num_hidden_layers += 1
insert_layer(st_dict, num_hidden_layers, layer_keys, 15, 0.5, 0.35, scale=None)
num_hidden_layers += 1
insert_layer(st_dict, num_hidden_layers, layer_keys, 14, 0.5, 0.35, scale=None)
num_hidden_layers += 1
insert_layer(st_dict, num_hidden_layers, layer_keys, 13, 0.5, 0.35, scale=None)
num_hidden_layers += 1
insert_layer(st_dict, num_hidden_layers, layer_keys, 12, 0.5, 0.35, scale=None)
num_hidden_layers += 1
insert_layer(st_dict, num_hidden_layers, layer_keys, 11, 0.5, 0.35, scale=None)
num_hidden_layers += 1
insert_layer(st_dict, num_hidden_layers, layer_keys, 11, 0.5, 0.35, scale=None)
num_hidden_layers += 1
insert_layer(st_dict, num_hidden_layers, layer_keys, 10, 0.5, 0.35, scale=None)
num_hidden_layers += 1
insert_layer(st_dict, num_hidden_layers, layer_keys, 9, 0.5, 0.35, scale=None)
num_hidden_layers += 1
insert_layer(st_dict, num_hidden_layers, layer_keys, 8, 0.5, 0.35, scale=None)
num_hidden_layers += 1
insert_layer(st_dict, num_hidden_layers, layer_keys, 7, 0.5, 0.35, scale=None)
num_hidden_layers += 1




os.makedirs("original", exist_ok=True)
#shutil.copy("model.safetensors", "original")
shutil.copy("config.json", "original")

#save_file(st_dict, "model.safetensors", metadata={"format": "pt"})

max_shard_size = 5000000000
current_shard_size = 0
current_shard_index = 0
shard_dict = {}
current_shard = {}
shard_names = list(st_dict.keys())

byte_sum = 0
param_sum = 0
params = {k: st_dict[k].numel() for k in st_dict.keys()}
tensor_size = {k: get_dtype_size_in_bytes(st_dict[k]) for k in st_dict.keys()}
for p in params.keys():
    param_sum += params[p]
    byte_sum += tensor_size[p]
print(f"total params: {param_sum}")
print(f"total size in bytes: {byte_sum}")

if 'lm_head.weight' in shard_names:
    tensor_name = 'lm_head.weight'
    current_shard[tensor_name] = st_dict[tensor_name]
    current_shard_size += tensor_size[tensor_name]
    # for i in range(len(shard_names)):
    #     if shard_names[i] == tensor_name:
    #         del shard_names[i]
    #         break

layers = {}

for i in range(num_hidden_layers):
    current_sizes = {}
    layers[i] = [k for k in shard_names if k.startswith(f"model.layers.{i}.")]

    for t in layers[i]:
        #current_shard[t] = st_dict[t]
        #size = get_dtype_size_in_bytes(st_dict[t])
        #current_sizes[t] = size
        current_sizes[t] = tensor_size[t]
        
        for i in range(len(shard_names)):
            if shard_names[i] == tensor_name:
                del shard_names[i]
                break

z = [k for k in shard_names if k.startswith(f"model.layers.")]
z.append("lm_head.weight")

remnants = list(set(shard_names) - set(z))
print(f"remnants size: {len(remnants)}")
print(remnants)


layer_size = 0
for l in layers[0]:
    layer_size += tensor_size[l]
print(f"total size of tensors in a single layer: {layer_size}")


for i in range(num_hidden_layers):
    print(f"current_shard_size: {current_shard_size}")
    print(f"layer_size: {layer_size}")
    print(f"max_shard_size: {max_shard_size}")
    if current_shard_size + layer_size >= max_shard_size:
        print(current_shard.keys())
        # write shard
        print(f"writing xmodel-{current_shard_index}.safetensors")
        save_file(current_shard, f"xmodel-{current_shard_index}.safetensors", metadata={"format": "pt"})
        shard_dict[current_shard_index] = current_shard.copy()
        current_shard_size = 0
        current_shard_index += 1
        current_shard = {}
        print(f"wrote xmodel-{current_shard_index}.safetensors")
    
    for t in layers[i]:
        print(f"shard: {t}")
        current_shard[t] = st_dict[t]
        current_shard_size += tensor_size[t]

print("")
print(shard_names)
print("")
print("")
print(current_shard.keys())

# add remnants

for x in remnants:
    remnant_size = get_dtype_size_in_bytes(st_dict[x])
    if current_shard_size + remnant_size < max_shard_size:
        current_shard[x] = st_dict[x]
        for i in range(len(remnants)):
            if remnants[i] == tensor_name:
                del remnants[i]
                break

# write shard
print(f"writing xmodel-{current_shard_index}.safetensors")
save_file(current_shard, f"xmodel-{current_shard_index}.safetensors", metadata={"format": "pt"})
shard_dict[current_shard_index] = current_shard.copy()
current_shard_size = 0
current_shard_index += 1
current_shard = {}
print(f"wrote xmodel-{current_shard_index}.safetensors")

for x in remnants:
    current_shard[x] = st_dict[x]

if len(remnants) > 0:
    # write shard
    print(f"writing xmodel-{current_shard_index}.safetensors")
    save_file(current_shard, f"xmodel-{current_shard_index}.safetensors", metadata={"format": "pt"})
    shard_dict[current_shard_index] = current_shard.copy()
    current_shard_size = 0
    current_shard_index += 1
    #current_shard = {}
    print(f"wrote xmodel-{current_shard_index-1}.safetensors")


# move safetensors to original
print("Moving old safetensors to old/")
unsorted_files = glob.glob("model-*-of-*.safetensors")
files = sorted(unsorted_files)

os.makedirs("old", exist_ok=True)

shutil.copy("config.json", "old")

for file in files:
    Path("old/" + file).unlink()
    shutil.move(file, "old")

Path("old/model.safetensors.index.json").unlink()
shutil.move("model.safetensors.index.json", "old")

# move xmodel to safetensors
for idx in range(current_shard_index):
    if Path(f"xmodel-{idx}.safetensors").is_file():
        shutil.move(f"xmodel-{idx}.safetensors", f"model-{idx+1:05}-of-{current_shard_index:05}.safetensors")


# write safetensor index
wmap = {}
index = {}

for idx in range(current_shard_index):
    #print(idx)
    ts = shard_dict[idx].keys()

    for tname in ts:
        wmap[tname] = f"model-{idx+1:05}-of-{current_shard_index:05}.safetensors"

index['metadata'] = {'total_size': param_sum}
index['weight_map'] = wmap
with open("model.safetensors.index.json", "w") as f:
    json.dump(index, f, indent=4)

conf['num_hidden_layers'] = num_hidden_layers
with open(Path(dir_name or model_name) / 'config.json', "w") as f:
    json.dump(conf, f, indent=4)