File size: 1,555 Bytes
cfa7fff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
license: apache-2.0
datasets:
- lodrick-the-lafted/Hermes-217K
---

<img src=https://huggingface.co/lodrick-the-lafted/Hermes-Instruct-217K/resolve/main/hermes-instruct.png>

# Hermes-Instruct-7B-217K

[Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) trained with 217K rows of [teknium/openhermes](https://huggingface.co/datasets/teknium/openhermes), in Alpaca format.
Why? Mistral-7B-Instruct-v0.2 has native 32K context and rope theta of 1M. It's not a base model, so I've used the same recipe with different amounts of data to gauge the effects of further finetuning.

<br />
<br />

# Prompt Format

Both the default Mistral-Instruct tags and Alpaca are fine, so either:
```
<s>[INST] {sys_prompt} {instruction} [/INST] 
```

or


```
{sys_prompt}

### Instruction:
{instruction}

### Response:

```
The tokenizer default is Alpaca this time around.

<br />
<br />

# Usage

```python
from transformers import AutoTokenizer
import transformers
import torch

model = "lodrick-the-lafted/Hermes-Instruct-7B-217K"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.bfloat16},
)

messages = [{"role": "user", "content": "Give me a cooking recipe for an apple pie."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_p=0.95)
print(outputs[0]["generated_text"])
```