--- library_name: keras widget: - text: input output: url: ./assets/input.png - text: target output: url: ./assets/target.png - text: output output: url: ./assets/output.png tags: - adversarial - aesthetic - quality - filter metrics: - TopIQ-FR - ArcFace Cosine Distance license: gpl-3.0 base_model: - vnet - logasja/ArcFace pipeline_tag: image-to-image datasets: - logasja/FDF --- Training logs [here](https://wandb.ai/spuds/auramask/runs/a12aef0a8ae82a31a052485a383c5d95) # Model Description This model uses a modified vnet for 2D input/output implemented [here](https://github.com/logasja/keras3-unets) with the following configuration. ```json { "activation": "ReLU", "batch_norm": false, "filter_num": [ 64, 128, 256, 512, 512 ], "n_labels": 3, "output_activation": "tanh", "pool": false, "res_num_ini": 1, "res_num_max": 3, "unpool": false } ``` ```json { "alpha": 0.0001, "batch": 64, "epochs": 500, "epsilon": 1, "input": "(256, 256)", "losses": { "FEAT_ArcFace": { "d": "cosine_similarity", "f": "ArcFace", "name": "FEAT_ArcFace", "reduction": "sum_over_batch_size", "threshold": 0.68, "weight": 0.1 }, "TopIQ": { "full_ref": true, "lower_better": false, "name": "TopIQ", "reduction": "sum_over_batch_size", "score_range": "~0, ~1", "weight": 0.9 }, "mean_squared_error": { "name": "mean_squared_error", "reduction": "sum_over_batch_size", "weight": 0.1 } }, "mixed_precision": true, "optimizer": { "amsgrad": false, "beta_1": 0.9, "beta_2": 0.999, "clipnorm": null, "clipvalue": null, "ema_momentum": 0.99, "ema_overwrite_frequency": null, "epsilon": 1e-07, "global_clipnorm": null, "gradient_accumulation_steps": null, "learning_rate": 9.999999747378752e-05, "loss_scale_factor": null, "name": "adamw", "use_ema": false, "weight_decay": 0.004 }, "seed": "BIIIIIGSTRETCH", "testing": 0.01, "training": 0.99 } ``` ## Model Architecture Plot ![](./assets/summary_plot.png)