File size: 14,946 Bytes
916c62f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
---
base_model: lombardata/DinoVdeau-large-2024_04_03-with_data_aug_batch-size32_epochs150_freeze
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: DinoVdeau-large-2024_04_03-with_data_aug_batch-size32_epochs150_freeze
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# DinoVdeau-large-2024_04_03-with_data_aug_batch-size32_epochs150_freeze

This model is a fine-tuned version of [lombardata/DinoVdeau-large-2024_04_03-with_data_aug_batch-size32_epochs150_freeze](https://huggingface.co/lombardata/DinoVdeau-large-2024_04_03-with_data_aug_batch-size32_epochs150_freeze) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1190
- F1 Micro: 0.8245
- F1 Macro: 0.7104
- Roc Auc: 0.8839
- Accuracy: 0.3216
- Learning Rate: 0.0000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 150

### Training results

| Training Loss | Epoch | Step  | Accuracy | F1 Macro | F1 Micro | Validation Loss | Roc Auc | Rate   |
|:-------------:|:-----:|:-----:|:--------:|:--------:|:--------:|:---------------:|:-------:|:------:|
| No log        | 1.0   | 271   | 0.2207   | 0.4907   | 0.7369   | 0.1679          | 0.8188  | 0.001  |
| 0.2713        | 2.0   | 542   | 0.2515   | 0.5389   | 0.7614   | 0.1540          | 0.8356  | 0.001  |
| 0.2713        | 3.0   | 813   | 0.2526   | 0.6054   | 0.7728   | 0.1477          | 0.8472  | 0.001  |
| 0.1679        | 4.0   | 1084  | 0.2594   | 0.5848   | 0.7755   | 0.1578          | 0.8442  | 0.001  |
| 0.1679        | 5.0   | 1355  | 0.2618   | 0.6125   | 0.7819   | 0.1426          | 0.8555  | 0.001  |
| 0.1598        | 6.0   | 1626  | 0.2550   | 0.6239   | 0.7822   | 0.1422          | 0.8542  | 0.001  |
| 0.1598        | 7.0   | 1897  | 0.2557   | 0.6320   | 0.7825   | 0.1426          | 0.8534  | 0.001  |
| 0.1571        | 8.0   | 2168  | 0.2629   | 0.6223   | 0.7756   | 0.1528          | 0.8437  | 0.001  |
| 0.1571        | 9.0   | 2439  | 0.2481   | 0.6413   | 0.7796   | 0.1438          | 0.8549  | 0.001  |
| 0.1554        | 10.0  | 2710  | 0.2697   | 0.6289   | 0.7889   | 0.1405          | 0.8621  | 0.001  |
| 0.1554        | 11.0  | 2981  | 0.2684   | 0.6222   | 0.7898   | 0.1409          | 0.8614  | 0.001  |
| 0.1536        | 12.0  | 3252  | 0.2725   | 0.6166   | 0.7863   | 0.1392          | 0.8528  | 0.001  |
| 0.1526        | 13.0  | 3523  | 0.2625   | 0.6419   | 0.7877   | 0.1399          | 0.8559  | 0.001  |
| 0.1526        | 14.0  | 3794  | 0.2649   | 0.6326   | 0.7860   | 0.1438          | 0.8609  | 0.001  |
| 0.1535        | 15.0  | 4065  | 0.2735   | 0.6499   | 0.7930   | 0.1377          | 0.8625  | 0.001  |
| 0.1535        | 16.0  | 4336  | 0.2677   | 0.6435   | 0.7868   | 0.1397          | 0.8526  | 0.001  |
| 0.1517        | 17.0  | 4607  | 0.2646   | 0.6401   | 0.7928   | 0.1382          | 0.8634  | 0.001  |
| 0.1517        | 18.0  | 4878  | 0.2684   | 0.6286   | 0.7912   | 0.1392          | 0.8624  | 0.001  |
| 0.1524        | 19.0  | 5149  | 0.2636   | 0.6183   | 0.7874   | 0.1392          | 0.8576  | 0.001  |
| 0.1524        | 20.0  | 5420  | 0.2598   | 0.6286   | 0.7878   | 0.1386          | 0.8578  | 0.001  |
| 0.1527        | 21.0  | 5691  | 0.2601   | 0.6408   | 0.7880   | 0.1374          | 0.8557  | 0.001  |
| 0.1527        | 22.0  | 5962  | 0.2704   | 0.6476   | 0.7897   | 0.1377          | 0.8577  | 0.001  |
| 0.1513        | 23.0  | 6233  | 0.2697   | 0.6443   | 0.7955   | 0.1373          | 0.8655  | 0.001  |
| 0.1514        | 24.0  | 6504  | 0.2656   | 0.6477   | 0.7877   | 0.1593          | 0.8547  | 0.001  |
| 0.1514        | 25.0  | 6775  | 0.2656   | 0.6477   | 0.7909   | 0.1371          | 0.8619  | 0.001  |
| 0.1513        | 26.0  | 7046  | 0.2666   | 0.6273   | 0.7871   | 0.1374          | 0.8535  | 0.001  |
| 0.1513        | 27.0  | 7317  | 0.2646   | 0.6470   | 0.7934   | 0.1373          | 0.8595  | 0.001  |
| 0.1508        | 28.0  | 7588  | 0.2735   | 0.6523   | 0.7933   | 0.1353          | 0.8584  | 0.001  |
| 0.1508        | 29.0  | 7859  | 0.2776   | 0.6522   | 0.7960   | 0.1362          | 0.8645  | 0.001  |
| 0.1506        | 30.0  | 8130  | 0.2505   | 0.6283   | 0.7849   | 0.1384          | 0.8546  | 0.001  |
| 0.1506        | 31.0  | 8401  | 0.2718   | 0.6630   | 0.7964   | 0.1342          | 0.8636  | 0.001  |
| 0.151         | 32.0  | 8672  | 0.2718   | 0.6556   | 0.7968   | 0.1366          | 0.8696  | 0.001  |
| 0.151         | 33.0  | 8943  | 0.2824   | 0.6635   | 0.7985   | 0.1359          | 0.8701  | 0.001  |
| 0.1507        | 34.0  | 9214  | 0.2814   | 0.6400   | 0.7999   | 0.1335          | 0.8657  | 0.001  |
| 0.1507        | 35.0  | 9485  | 0.2725   | 0.6520   | 0.7963   | 0.1343          | 0.8653  | 0.001  |
| 0.1495        | 36.0  | 9756  | 0.2636   | 0.6451   | 0.7924   | 0.1429          | 0.8626  | 0.001  |
| 0.1496        | 37.0  | 10027 | 0.2732   | 0.6531   | 0.7981   | 0.1331          | 0.8638  | 0.001  |
| 0.1496        | 38.0  | 10298 | 0.2684   | 0.6306   | 0.7938   | 0.1350          | 0.8617  | 0.001  |
| 0.1503        | 39.0  | 10569 | 0.2800   | 0.6465   | 0.7984   | 0.1352          | 0.8661  | 0.001  |
| 0.1503        | 40.0  | 10840 | 0.2728   | 0.6271   | 0.7925   | 0.1347          | 0.8594  | 0.001  |
| 0.1505        | 41.0  | 11111 | 0.2721   | 0.6601   | 0.7935   | 0.1340          | 0.8579  | 0.001  |
| 0.1505        | 42.0  | 11382 | 0.2711   | 0.6636   | 0.7983   | 0.1322          | 0.8652  | 0.001  |
| 0.1491        | 43.0  | 11653 | 0.2735   | 0.6493   | 0.7949   | 0.1360          | 0.8635  | 0.001  |
| 0.1491        | 44.0  | 11924 | 0.2814   | 0.6400   | 0.7955   | 0.1361          | 0.8625  | 0.001  |
| 0.1507        | 45.0  | 12195 | 0.2814   | 0.6424   | 0.7971   | 0.1328          | 0.8640  | 0.001  |
| 0.1507        | 46.0  | 12466 | 0.2787   | 0.6469   | 0.7939   | 0.1328          | 0.8581  | 0.001  |
| 0.1495        | 47.0  | 12737 | 0.2752   | 0.6351   | 0.7977   | 0.1332          | 0.8672  | 0.001  |
| 0.1498        | 48.0  | 13008 | 0.2817   | 0.6490   | 0.8013   | 0.1325          | 0.8694  | 0.001  |
| 0.1498        | 49.0  | 13279 | 0.2883   | 0.6738   | 0.8062   | 0.1283          | 0.8710  | 0.0001 |
| 0.1416        | 50.0  | 13550 | 0.2872   | 0.6734   | 0.8087   | 0.1287          | 0.8747  | 0.0001 |
| 0.1416        | 51.0  | 13821 | 0.2900   | 0.6714   | 0.8067   | 0.1280          | 0.8706  | 0.0001 |
| 0.1387        | 52.0  | 14092 | 0.2900   | 0.6744   | 0.8067   | 0.1262          | 0.8702  | 0.0001 |
| 0.1387        | 53.0  | 14363 | 0.2910   | 0.6764   | 0.8094   | 0.1262          | 0.8729  | 0.0001 |
| 0.1356        | 54.0  | 14634 | 0.2948   | 0.6744   | 0.8091   | 0.1257          | 0.8702  | 0.0001 |
| 0.1356        | 55.0  | 14905 | 0.1257   | 0.8106   | 0.6814   | 0.8742          | 0.2948  | 0.0001 |
| 0.1348        | 56.0  | 15176 | 0.1260   | 0.8108   | 0.6772   | 0.8738          | 0.3010  | 0.0001 |
| 0.1348        | 57.0  | 15447 | 0.1250   | 0.8129   | 0.6806   | 0.8768          | 0.2986  | 0.0001 |
| 0.135         | 58.0  | 15718 | 0.1242   | 0.8142   | 0.6859   | 0.8762          | 0.3082  | 0.0001 |
| 0.135         | 59.0  | 15989 | 0.1245   | 0.8124   | 0.6870   | 0.8763          | 0.3027  | 0.0001 |
| 0.1334        | 60.0  | 16260 | 0.1242   | 0.8138   | 0.6854   | 0.8772          | 0.3030  | 0.0001 |
| 0.1335        | 61.0  | 16531 | 0.1240   | 0.8140   | 0.6889   | 0.8756          | 0.3065  | 0.0001 |
| 0.1335        | 62.0  | 16802 | 0.1249   | 0.8152   | 0.6809   | 0.8798          | 0.3016  | 0.0001 |
| 0.1308        | 63.0  | 17073 | 0.1233   | 0.8146   | 0.6848   | 0.8757          | 0.3068  | 0.0001 |
| 0.1308        | 64.0  | 17344 | 0.1234   | 0.8151   | 0.6908   | 0.8769          | 0.3058  | 0.0001 |
| 0.1326        | 65.0  | 17615 | 0.1233   | 0.8124   | 0.6812   | 0.8735          | 0.3034  | 0.0001 |
| 0.1326        | 66.0  | 17886 | 0.1232   | 0.8145   | 0.6878   | 0.8788          | 0.3027  | 0.0001 |
| 0.1306        | 67.0  | 18157 | 0.1228   | 0.8115   | 0.6857   | 0.8707          | 0.3075  | 0.0001 |
| 0.1306        | 68.0  | 18428 | 0.1226   | 0.8153   | 0.6913   | 0.8767          | 0.3075  | 0.0001 |
| 0.1299        | 69.0  | 18699 | 0.1227   | 0.8143   | 0.6764   | 0.8751          | 0.3085  | 0.0001 |
| 0.1299        | 70.0  | 18970 | 0.1230   | 0.8187   | 0.6999   | 0.8838          | 0.3106  | 0.0001 |
| 0.1295        | 71.0  | 19241 | 0.1225   | 0.8153   | 0.6893   | 0.8756          | 0.3068  | 0.0001 |
| 0.1289        | 72.0  | 19512 | 0.1223   | 0.8151   | 0.6868   | 0.8776          | 0.3037  | 0.0001 |
| 0.1289        | 73.0  | 19783 | 0.1223   | 0.8165   | 0.6918   | 0.8782          | 0.3054  | 0.0001 |
| 0.1279        | 74.0  | 20054 | 0.1225   | 0.8143   | 0.6856   | 0.8747          | 0.3054  | 0.0001 |
| 0.1279        | 75.0  | 20325 | 0.1221   | 0.8167   | 0.6878   | 0.8784          | 0.3102  | 0.0001 |
| 0.1276        | 76.0  | 20596 | 0.1217   | 0.8190   | 0.6964   | 0.8812          | 0.3167  | 0.0001 |
| 0.1276        | 77.0  | 20867 | 0.1217   | 0.8179   | 0.6940   | 0.8796          | 0.3102  | 0.0001 |
| 0.1274        | 78.0  | 21138 | 0.1216   | 0.8143   | 0.6859   | 0.8735          | 0.3082  | 0.0001 |
| 0.1274        | 79.0  | 21409 | 0.1215   | 0.8165   | 0.6945   | 0.8766          | 0.3147  | 0.0001 |
| 0.1269        | 80.0  | 21680 | 0.1214   | 0.8193   | 0.6999   | 0.8803          | 0.3147  | 0.0001 |
| 0.1269        | 81.0  | 21951 | 0.1214   | 0.8194   | 0.6974   | 0.8828          | 0.3113  | 0.0001 |
| 0.1259        | 82.0  | 22222 | 0.1212   | 0.8171   | 0.6956   | 0.8782          | 0.3102  | 0.0001 |
| 0.1259        | 83.0  | 22493 | 0.1208   | 0.8190   | 0.6970   | 0.8791          | 0.3123  | 0.0001 |
| 0.1258        | 84.0  | 22764 | 0.1209   | 0.8204   | 0.6997   | 0.8813          | 0.3154  | 0.0001 |
| 0.1251        | 85.0  | 23035 | 0.1211   | 0.8163   | 0.6935   | 0.8752          | 0.3065  | 0.0001 |
| 0.1251        | 86.0  | 23306 | 0.1203   | 0.8201   | 0.6972   | 0.8804          | 0.3154  | 0.0001 |
| 0.1251        | 87.0  | 23577 | 0.1208   | 0.8182   | 0.6947   | 0.8785          | 0.3150  | 0.0001 |
| 0.1251        | 88.0  | 23848 | 0.1214   | 0.8181   | 0.6937   | 0.8788          | 0.3154  | 0.0001 |
| 0.1246        | 89.0  | 24119 | 0.1206   | 0.8201   | 0.6953   | 0.8797          | 0.3106  | 0.0001 |
| 0.1246        | 90.0  | 24390 | 0.1210   | 0.8214   | 0.6960   | 0.8819          | 0.3164  | 0.0001 |
| 0.1239        | 91.0  | 24661 | 0.1199   | 0.8202   | 0.7006   | 0.8805          | 0.3154  | 0.0001 |
| 0.1239        | 92.0  | 24932 | 0.1208   | 0.8222   | 0.7039   | 0.8856          | 0.3161  | 0.0001 |
| 0.1238        | 93.0  | 25203 | 0.1204   | 0.8199   | 0.7004   | 0.8808          | 0.3133  | 0.0001 |
| 0.1238        | 94.0  | 25474 | 0.1200   | 0.8230   | 0.7036   | 0.8847          | 0.3143  | 0.0001 |
| 0.1237        | 95.0  | 25745 | 0.1206   | 0.8209   | 0.7069   | 0.8817          | 0.3188  | 0.0001 |
| 0.1234        | 96.0  | 26016 | 0.1201   | 0.8222   | 0.7060   | 0.8820          | 0.3147  | 0.0001 |
| 0.1234        | 97.0  | 26287 | 0.1204   | 0.8208   | 0.7074   | 0.8830          | 0.3092  | 0.0001 |
| 0.1215        | 98.0  | 26558 | 0.1200   | 0.8241   | 0.7125   | 0.8859          | 0.3188  | 1e-05  |
| 0.1215        | 99.0  | 26829 | 0.1195   | 0.8247   | 0.7127   | 0.8864          | 0.3171  | 1e-05  |
| 0.1208        | 100.0 | 27100 | 0.1192   | 0.8225   | 0.7077   | 0.8818          | 0.3164  | 1e-05  |
| 0.1208        | 101.0 | 27371 | 0.1193   | 0.8232   | 0.7060   | 0.8831          | 0.3171  | 1e-05  |
| 0.1195        | 102.0 | 27642 | 0.1197   | 0.8238   | 0.7105   | 0.8848          | 0.3185  | 1e-05  |
| 0.1195        | 103.0 | 27913 | 0.1191   | 0.8216   | 0.7076   | 0.8805          | 0.3140  | 1e-05  |
| 0.1197        | 104.0 | 28184 | 0.1193   | 0.8239   | 0.7063   | 0.8843          | 0.3202  | 1e-05  |
| 0.1197        | 105.0 | 28455 | 0.1190   | 0.8213   | 0.7071   | 0.8799          | 0.3126  | 1e-05  |
| 0.1189        | 106.0 | 28726 | 0.1190   | 0.8233   | 0.7061   | 0.8835          | 0.3202  | 1e-05  |
| 0.1189        | 107.0 | 28997 | 0.1194   | 0.8224   | 0.7038   | 0.8811          | 0.3164  | 1e-05  |
| 0.1194        | 108.0 | 29268 | 0.1191   | 0.8232   | 0.7110   | 0.8830          | 0.3191  | 1e-05  |
| 0.1187        | 109.0 | 29539 | 0.1189   | 0.8230   | 0.7101   | 0.8817          | 0.3174  | 1e-05  |
| 0.1187        | 110.0 | 29810 | 0.1192   | 0.8224   | 0.7044   | 0.8810          | 0.3161  | 1e-05  |
| 0.1185        | 111.0 | 30081 | 0.1192   | 0.8226   | 0.7083   | 0.8827          | 0.3174  | 1e-05  |
| 0.1185        | 112.0 | 30352 | 0.1190   | 0.8239   | 0.7093   | 0.8841          | 0.3205  | 1e-05  |
| 0.119         | 113.0 | 30623 | 0.1195   | 0.8233   | 0.7080   | 0.8845          | 0.3171  | 1e-05  |
| 0.119         | 114.0 | 30894 | 0.1190   | 0.8220   | 0.7062   | 0.8799          | 0.3181  | 1e-05  |
| 0.1182        | 115.0 | 31165 | 0.1192   | 0.8229   | 0.7081   | 0.8823          | 0.3174  | 1e-05  |
| 0.1182        | 116.0 | 31436 | 0.1190   | 0.8256   | 0.7128   | 0.8862          | 0.3250  | 0.0000 |
| 0.1191        | 117.0 | 31707 | 0.1187   | 0.8231   | 0.7104   | 0.8821          | 0.3171  | 0.0000 |
| 0.1191        | 118.0 | 31978 | 0.1189   | 0.8236   | 0.7061   | 0.8830          | 0.3198  | 0.0000 |
| 0.1179        | 119.0 | 32249 | 0.1189   | 0.8233   | 0.7080   | 0.8830          | 0.3181  | 0.0000 |
| 0.1176        | 120.0 | 32520 | 0.1190   | 0.8239   | 0.7101   | 0.8838          | 0.3185  | 0.0000 |
| 0.1176        | 121.0 | 32791 | 0.1195   | 0.8254   | 0.7128   | 0.8872          | 0.3209  | 0.0000 |
| 0.1175        | 122.0 | 33062 | 0.1192   | 0.8223   | 0.7048   | 0.8813          | 0.3154  | 0.0000 |
| 0.1175        | 123.0 | 33333 | 0.1192   | 0.8255   | 0.7154   | 0.8856          | 0.3212  | 0.0000 |
| 0.1176        | 124.0 | 33604 | 0.1189   | 0.8239   | 0.7109   | 0.8837          | 0.3209  | 0.0000 |
| 0.1176        | 125.0 | 33875 | 0.1189   | 0.8252   | 0.7102   | 0.8847          | 0.3226  | 0.0000 |
| 0.1179        | 126.0 | 34146 | 0.1189   | 0.8206   | 0.7025   | 0.8787          | 0.3164  | 0.0000 |
| 0.1179        | 127.0 | 34417 | 0.1190   | 0.8245   | 0.7104   | 0.8839          | 0.3216  | 0.0000 |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.0+cu118
- Datasets 2.18.0
- Tokenizers 0.15.0