lombardata
commited on
Commit
•
26f1340
1
Parent(s):
d71dcd6
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -2,13 +2,13 @@
|
|
2 |
language:
|
3 |
- eng
|
4 |
license: apache-2.0
|
5 |
-
base_model: facebook/dinov2-large
|
6 |
tags:
|
7 |
- multilabel-image-classification
|
8 |
- multilabel
|
9 |
- generated_from_trainer
|
10 |
metrics:
|
11 |
- accuracy
|
|
|
12 |
model-index:
|
13 |
- name: DinoVdeau-large-2024_04_03-with_data_aug_batch-size32_epochs150_freeze
|
14 |
results: []
|
@@ -19,7 +19,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
19 |
|
20 |
# DinoVdeau-large-2024_04_03-with_data_aug_batch-size32_epochs150_freeze
|
21 |
|
22 |
-
|
23 |
It achieves the following results on the evaluation set:
|
24 |
- Loss: 0.1181
|
25 |
- F1 Micro: 0.8219
|
@@ -30,18 +30,71 @@ It achieves the following results on the evaluation set:
|
|
30 |
|
31 |
## Model description
|
32 |
|
33 |
-
|
|
|
34 |
|
35 |
## Intended uses & limitations
|
36 |
|
37 |
-
|
38 |
|
39 |
## Training and evaluation data
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
## Training procedure
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
### Training hyperparameters
|
46 |
|
47 |
The following hyperparameters were used during training:
|
@@ -50,7 +103,8 @@ The following hyperparameters were used during training:
|
|
50 |
- eval_batch_size: 32
|
51 |
- seed: 42
|
52 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
-
- lr_scheduler_type:
|
|
|
54 |
- num_epochs: 150
|
55 |
|
56 |
### Training results
|
|
|
2 |
language:
|
3 |
- eng
|
4 |
license: apache-2.0
|
|
|
5 |
tags:
|
6 |
- multilabel-image-classification
|
7 |
- multilabel
|
8 |
- generated_from_trainer
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
+
base_model: facebook/dinov2-large
|
12 |
model-index:
|
13 |
- name: DinoVdeau-large-2024_04_03-with_data_aug_batch-size32_epochs150_freeze
|
14 |
results: []
|
|
|
19 |
|
20 |
# DinoVdeau-large-2024_04_03-with_data_aug_batch-size32_epochs150_freeze
|
21 |
|
22 |
+
DinoVd'eau is a fine-tuned version of [facebook/dinov2-large](https://huggingface.co/facebook/dinov2-large) on the multilabel_complete_dataset dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
- Loss: 0.1181
|
25 |
- F1 Micro: 0.8219
|
|
|
30 |
|
31 |
## Model description
|
32 |
|
33 |
+
DinoVd'eau is a model built on top of dinov2 model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.
|
34 |
+
- **Developed by:** [lombardata](https://huggingface.co/lombardata), credits to [César Leblanc](https://huggingface.co/CesarLeblanc)
|
35 |
|
36 |
## Intended uses & limitations
|
37 |
|
38 |
+
You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.
|
39 |
|
40 |
## Training and evaluation data
|
41 |
|
42 |
+
Details on the number of images for each class are given in the following table:
|
43 |
+
| |train |val |test |Total |
|
44 |
+
|--- | --- | --- | --- | --- |
|
45 |
+
| Acropore_branched | 1504 | 445 | 430 | 2379 |
|
46 |
+
| Acropore_digitised | 593 | 151 | 144 | 888 |
|
47 |
+
| Acropore_sub_massive | 148 | 54 | 41 | 243 |
|
48 |
+
| Acropore_tabular | 1012 | 290 | 287 | 1589 |
|
49 |
+
| Algae_assembly | 2545 | 858 | 835 | 4238 |
|
50 |
+
| Algae_drawn_up | 376 | 123 | 121 | 620 |
|
51 |
+
| Algae_limestone | 1652 | 561 | 559 | 2772 |
|
52 |
+
| Algae_sodding | 3094 | 1011 | 1012 | 5117 |
|
53 |
+
| Atra/Leucospilota | 1081 | 352 | 359 | 1792 |
|
54 |
+
| Bleached_coral | 220 | 70 | 70 | 360 |
|
55 |
+
| Blurred | 192 | 62 | 66 | 320 |
|
56 |
+
| Dead_coral | 2001 | 637 | 626 | 3264 |
|
57 |
+
| Fish | 2068 | 611 | 642 | 3321 |
|
58 |
+
| Homo_sapiens | 162 | 60 | 60 | 282 |
|
59 |
+
| Human_object | 157 | 60 | 53 | 270 |
|
60 |
+
| Living_coral | 147 | 56 | 47 | 250 |
|
61 |
+
| Millepore | 378 | 131 | 128 | 637 |
|
62 |
+
| No_acropore_encrusting | 422 | 152 | 151 | 725 |
|
63 |
+
| No_acropore_foliaceous | 200 | 46 | 40 | 286 |
|
64 |
+
| No_acropore_massive | 1033 | 337 | 335 | 1705 |
|
65 |
+
| No_acropore_solitary | 193 | 56 | 54 | 303 |
|
66 |
+
| No_acropore_sub_massive | 1412 | 418 | 426 | 2256 |
|
67 |
+
| Rock | 4487 | 1481 | 1489 | 7457 |
|
68 |
+
| Sand | 5806 | 1959 | 1954 | 9719 |
|
69 |
+
| Scrap | 3063 | 1030 | 1030 | 5123 |
|
70 |
+
| Sea_cucumber | 1396 | 453 | 445 | 2294 |
|
71 |
+
| Sea_urchins | 319 | 122 | 104 | 545 |
|
72 |
+
| Sponge | 273 | 107 | 90 | 470 |
|
73 |
+
| Syringodium_isoetifolium | 1198 | 399 | 398 | 1995 |
|
74 |
+
| Thalassodendron_ciliatum | 781 | 260 | 262 | 1303 |
|
75 |
+
| Useless | 579 | 193 | 193 | 965 |
|
76 |
+
|
77 |
|
78 |
## Training procedure
|
79 |
|
80 |
+
### Data Augmentation
|
81 |
+
|
82 |
+
Data were augmented using the following transformations :
|
83 |
+
- training transformations : Sequential(
|
84 |
+
(0): PreProcess()
|
85 |
+
(1): Resize(output_size=(518, 518), p=1.0, p_batch=1.0, same_on_batch=True, size=(518, 518), side=short, resample=bilinear, align_corners=True, antialias=False)
|
86 |
+
(2): RandomHorizontalFlip(p=0.25, p_batch=1.0, same_on_batch=False)
|
87 |
+
(3): RandomVerticalFlip(p=0.25, p_batch=1.0, same_on_batch=False)
|
88 |
+
(4): ColorJiggle(brightness=0.0, contrast=0.0, saturation=0.0, hue=0.0, p=0.25, p_batch=1.0, same_on_batch=False)
|
89 |
+
(5): RandomPerspective(distortion_scale=0.5, p=0.25, p_batch=1.0, same_on_batch=False, align_corners=False, resample=bilinear)
|
90 |
+
(6): Normalize(p=1.0, p_batch=1.0, same_on_batch=True, mean=tensor([0.4850, 0.4560, 0.4060]), std=tensor([0.2290, 0.2240, 0.2250]))
|
91 |
+
)
|
92 |
+
- validation transformations : Sequential(
|
93 |
+
(0): PreProcess()
|
94 |
+
(1): Resize(output_size=(518, 518), p=1.0, p_batch=1.0, same_on_batch=True, size=(518, 518), side=short, resample=bilinear, align_corners=True, antialias=False)
|
95 |
+
(2): Normalize(p=1.0, p_batch=1.0, same_on_batch=True, mean=tensor([0.4850, 0.4560, 0.4060]), std=tensor([0.2290, 0.2240, 0.2250]))
|
96 |
+
)
|
97 |
+
|
98 |
### Training hyperparameters
|
99 |
|
100 |
The following hyperparameters were used during training:
|
|
|
103 |
- eval_batch_size: 32
|
104 |
- seed: 42
|
105 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
106 |
+
- lr_scheduler_type: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
|
107 |
+
- freeze_encoder: True
|
108 |
- num_epochs: 150
|
109 |
|
110 |
### Training results
|