File size: 16,565 Bytes
1e99df2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
---
license: apache-2.0
base_model: facebook/dinov2-small
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: DinoVdeau-small-2024_08_31-batch-size32_epochs150_freeze
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# DinoVdeau-small-2024_08_31-batch-size32_epochs150_freeze
This model is a fine-tuned version of [facebook/dinov2-small](https://huggingface.co/facebook/dinov2-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1320
- F1 Micro: 0.8009
- F1 Macro: 0.6614
- Roc Auc: 0.8649
- Accuracy: 0.2903
- Learning Rate: 0.0000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 150
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Micro | F1 Macro | Roc Auc | Accuracy | Rate |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:-------:|:--------:|:------:|
| No log | 1.0 | 273 | 0.1957 | 0.7089 | 0.4059 | 0.8061 | 0.1906 | 0.001 |
| 0.3189 | 2.0 | 546 | 0.1720 | 0.7381 | 0.4868 | 0.8255 | 0.2193 | 0.001 |
| 0.3189 | 3.0 | 819 | 0.1621 | 0.7579 | 0.5587 | 0.8388 | 0.2322 | 0.001 |
| 0.1897 | 4.0 | 1092 | 0.1595 | 0.7463 | 0.5562 | 0.8221 | 0.2249 | 0.001 |
| 0.1897 | 5.0 | 1365 | 0.1569 | 0.7511 | 0.5723 | 0.8245 | 0.2315 | 0.001 |
| 0.1808 | 6.0 | 1638 | 0.1530 | 0.7635 | 0.5787 | 0.8365 | 0.2363 | 0.001 |
| 0.1808 | 7.0 | 1911 | 0.1523 | 0.7652 | 0.5982 | 0.8389 | 0.2335 | 0.001 |
| 0.1763 | 8.0 | 2184 | 0.1531 | 0.7655 | 0.5880 | 0.8377 | 0.2419 | 0.001 |
| 0.1763 | 9.0 | 2457 | 0.1499 | 0.7700 | 0.6069 | 0.8431 | 0.2401 | 0.001 |
| 0.1735 | 10.0 | 2730 | 0.1510 | 0.7606 | 0.5829 | 0.8277 | 0.2439 | 0.001 |
| 0.1723 | 11.0 | 3003 | 0.1521 | 0.7690 | 0.5976 | 0.8400 | 0.2505 | 0.001 |
| 0.1723 | 12.0 | 3276 | 0.1503 | 0.7760 | 0.6074 | 0.8527 | 0.2443 | 0.001 |
| 0.1719 | 13.0 | 3549 | 0.1504 | 0.7624 | 0.6003 | 0.8302 | 0.2439 | 0.001 |
| 0.1719 | 14.0 | 3822 | 0.1497 | 0.7644 | 0.6028 | 0.8343 | 0.2446 | 0.001 |
| 0.1702 | 15.0 | 4095 | 0.1475 | 0.7752 | 0.6066 | 0.8446 | 0.2512 | 0.001 |
| 0.1702 | 16.0 | 4368 | 0.1500 | 0.7646 | 0.5838 | 0.8321 | 0.2464 | 0.001 |
| 0.1696 | 17.0 | 4641 | 0.1530 | 0.7720 | 0.6073 | 0.8464 | 0.2457 | 0.001 |
| 0.1696 | 18.0 | 4914 | 0.1491 | 0.7752 | 0.6143 | 0.8475 | 0.2439 | 0.001 |
| 0.1717 | 19.0 | 5187 | 0.1495 | 0.7740 | 0.6075 | 0.8484 | 0.2346 | 0.001 |
| 0.1717 | 20.0 | 5460 | 0.1487 | 0.7637 | 0.5956 | 0.8322 | 0.2453 | 0.001 |
| 0.1705 | 21.0 | 5733 | 0.1471 | 0.7805 | 0.6165 | 0.8540 | 0.2474 | 0.001 |
| 0.1706 | 22.0 | 6006 | 0.1509 | 0.7754 | 0.6074 | 0.8494 | 0.2453 | 0.001 |
| 0.1706 | 23.0 | 6279 | 0.1502 | 0.7719 | 0.6127 | 0.8388 | 0.2429 | 0.001 |
| 0.1699 | 24.0 | 6552 | 0.1497 | 0.7699 | 0.5849 | 0.8406 | 0.2401 | 0.001 |
| 0.1699 | 25.0 | 6825 | 0.1470 | 0.7761 | 0.6035 | 0.8459 | 0.2426 | 0.001 |
| 0.1694 | 26.0 | 7098 | 0.1481 | 0.7751 | 0.6065 | 0.8466 | 0.2422 | 0.001 |
| 0.1694 | 27.0 | 7371 | 0.1458 | 0.7689 | 0.6136 | 0.8357 | 0.2474 | 0.001 |
| 0.17 | 28.0 | 7644 | 0.1454 | 0.7751 | 0.6077 | 0.8441 | 0.2446 | 0.001 |
| 0.17 | 29.0 | 7917 | 0.1494 | 0.7735 | 0.6108 | 0.8491 | 0.2457 | 0.001 |
| 0.1685 | 30.0 | 8190 | 0.1455 | 0.7705 | 0.5983 | 0.8366 | 0.2498 | 0.001 |
| 0.1685 | 31.0 | 8463 | 0.1454 | 0.7785 | 0.6069 | 0.8495 | 0.2533 | 0.001 |
| 0.1687 | 32.0 | 8736 | 0.1466 | 0.7746 | 0.6145 | 0.8461 | 0.2453 | 0.001 |
| 0.1679 | 33.0 | 9009 | 0.1446 | 0.7770 | 0.6125 | 0.8439 | 0.2540 | 0.001 |
| 0.1679 | 34.0 | 9282 | 0.1468 | 0.7781 | 0.6168 | 0.8470 | 0.2446 | 0.001 |
| 0.168 | 35.0 | 9555 | 0.1486 | 0.7767 | 0.6193 | 0.8452 | 0.2495 | 0.001 |
| 0.168 | 36.0 | 9828 | 0.1464 | 0.7719 | 0.6093 | 0.8391 | 0.2488 | 0.001 |
| 0.169 | 37.0 | 10101 | 0.1448 | 0.7734 | 0.6127 | 0.8402 | 0.2498 | 0.001 |
| 0.169 | 38.0 | 10374 | 0.1451 | 0.7815 | 0.6110 | 0.8526 | 0.2523 | 0.001 |
| 0.167 | 39.0 | 10647 | 0.1447 | 0.7824 | 0.6272 | 0.8563 | 0.2498 | 0.001 |
| 0.167 | 40.0 | 10920 | 0.1482 | 0.7837 | 0.6266 | 0.8537 | 0.2536 | 0.0001 |
| 0.1652 | 41.0 | 11193 | 0.1414 | 0.7833 | 0.6324 | 0.8483 | 0.2616 | 0.0001 |
| 0.1652 | 42.0 | 11466 | 0.1398 | 0.7884 | 0.6372 | 0.8546 | 0.2620 | 0.0001 |
| 0.1608 | 43.0 | 11739 | 0.1411 | 0.7871 | 0.6367 | 0.8537 | 0.2640 | 0.0001 |
| 0.1596 | 44.0 | 12012 | 0.1390 | 0.7879 | 0.6257 | 0.8537 | 0.2613 | 0.0001 |
| 0.1596 | 45.0 | 12285 | 0.1386 | 0.7894 | 0.6421 | 0.8539 | 0.2665 | 0.0001 |
| 0.1582 | 46.0 | 12558 | 0.1396 | 0.7874 | 0.6283 | 0.8522 | 0.2665 | 0.0001 |
| 0.1582 | 47.0 | 12831 | 0.1387 | 0.7864 | 0.6287 | 0.8500 | 0.2637 | 0.0001 |
| 0.1584 | 48.0 | 13104 | 0.1378 | 0.7913 | 0.6335 | 0.8572 | 0.2678 | 0.0001 |
| 0.1584 | 49.0 | 13377 | 0.1377 | 0.7934 | 0.6382 | 0.8603 | 0.2640 | 0.0001 |
| 0.157 | 50.0 | 13650 | 0.1376 | 0.7918 | 0.6363 | 0.8570 | 0.2675 | 0.0001 |
| 0.157 | 51.0 | 13923 | 0.1375 | 0.7929 | 0.6427 | 0.8597 | 0.2661 | 0.0001 |
| 0.1567 | 52.0 | 14196 | 0.1377 | 0.7871 | 0.6368 | 0.8507 | 0.2658 | 0.0001 |
| 0.1567 | 53.0 | 14469 | 0.1374 | 0.7929 | 0.6406 | 0.8601 | 0.2692 | 0.0001 |
| 0.1571 | 54.0 | 14742 | 0.1369 | 0.7921 | 0.6412 | 0.8562 | 0.2717 | 0.0001 |
| 0.1548 | 55.0 | 15015 | 0.1370 | 0.7914 | 0.6378 | 0.8558 | 0.2703 | 0.0001 |
| 0.1548 | 56.0 | 15288 | 0.1365 | 0.7931 | 0.6425 | 0.8602 | 0.2644 | 0.0001 |
| 0.155 | 57.0 | 15561 | 0.1368 | 0.7926 | 0.6382 | 0.8588 | 0.2675 | 0.0001 |
| 0.155 | 58.0 | 15834 | 0.1365 | 0.7916 | 0.6374 | 0.8553 | 0.2675 | 0.0001 |
| 0.155 | 59.0 | 16107 | 0.1364 | 0.7922 | 0.6429 | 0.8565 | 0.2675 | 0.0001 |
| 0.155 | 60.0 | 16380 | 0.1369 | 0.7883 | 0.6358 | 0.8515 | 0.2651 | 0.0001 |
| 0.1546 | 61.0 | 16653 | 0.1364 | 0.7946 | 0.6504 | 0.8589 | 0.2713 | 0.0001 |
| 0.1546 | 62.0 | 16926 | 0.1356 | 0.7932 | 0.6442 | 0.8575 | 0.2751 | 0.0001 |
| 0.1536 | 63.0 | 17199 | 0.1355 | 0.7966 | 0.6516 | 0.8611 | 0.2737 | 0.0001 |
| 0.1536 | 64.0 | 17472 | 0.1359 | 0.7934 | 0.6450 | 0.8578 | 0.2678 | 0.0001 |
| 0.1544 | 65.0 | 17745 | 0.1357 | 0.7936 | 0.6455 | 0.8572 | 0.2706 | 0.0001 |
| 0.1529 | 66.0 | 18018 | 0.1357 | 0.7946 | 0.6477 | 0.8595 | 0.2713 | 0.0001 |
| 0.1529 | 67.0 | 18291 | 0.1353 | 0.7966 | 0.6544 | 0.8623 | 0.2755 | 0.0001 |
| 0.1528 | 68.0 | 18564 | 0.1353 | 0.7956 | 0.6519 | 0.8608 | 0.2734 | 0.0001 |
| 0.1528 | 69.0 | 18837 | 0.1347 | 0.7966 | 0.6516 | 0.8603 | 0.2699 | 0.0001 |
| 0.1528 | 70.0 | 19110 | 0.1350 | 0.7945 | 0.6442 | 0.8575 | 0.2720 | 0.0001 |
| 0.1528 | 71.0 | 19383 | 0.1350 | 0.7933 | 0.6442 | 0.8557 | 0.2723 | 0.0001 |
| 0.1522 | 72.0 | 19656 | 0.1345 | 0.7970 | 0.6485 | 0.8605 | 0.2758 | 0.0001 |
| 0.1522 | 73.0 | 19929 | 0.1342 | 0.7977 | 0.6519 | 0.8616 | 0.2762 | 0.0001 |
| 0.1523 | 74.0 | 20202 | 0.1350 | 0.7915 | 0.6413 | 0.8520 | 0.2751 | 0.0001 |
| 0.1523 | 75.0 | 20475 | 0.1346 | 0.7947 | 0.6485 | 0.8572 | 0.2751 | 0.0001 |
| 0.1521 | 76.0 | 20748 | 0.1344 | 0.7965 | 0.6478 | 0.8598 | 0.2758 | 0.0001 |
| 0.1515 | 77.0 | 21021 | 0.1346 | 0.7978 | 0.6537 | 0.8623 | 0.2775 | 0.0001 |
| 0.1515 | 78.0 | 21294 | 0.1341 | 0.7978 | 0.6543 | 0.8635 | 0.2775 | 0.0001 |
| 0.1514 | 79.0 | 21567 | 0.1340 | 0.7953 | 0.6523 | 0.8574 | 0.2741 | 0.0001 |
| 0.1514 | 80.0 | 21840 | 0.1344 | 0.7993 | 0.6546 | 0.8653 | 0.2782 | 0.0001 |
| 0.1516 | 81.0 | 22113 | 0.1341 | 0.7967 | 0.6560 | 0.8576 | 0.2758 | 0.0001 |
| 0.1516 | 82.0 | 22386 | 0.1341 | 0.7948 | 0.6454 | 0.8555 | 0.2765 | 0.0001 |
| 0.149 | 83.0 | 22659 | 0.1351 | 0.7924 | 0.6460 | 0.8543 | 0.2703 | 0.0001 |
| 0.149 | 84.0 | 22932 | 0.1339 | 0.7957 | 0.6512 | 0.8586 | 0.2755 | 0.0001 |
| 0.1515 | 85.0 | 23205 | 0.1334 | 0.7991 | 0.6532 | 0.8620 | 0.2793 | 0.0001 |
| 0.1515 | 86.0 | 23478 | 0.1334 | 0.7988 | 0.6596 | 0.8625 | 0.2748 | 0.0001 |
| 0.1495 | 87.0 | 23751 | 0.1340 | 0.7956 | 0.6467 | 0.8591 | 0.2744 | 0.0001 |
| 0.1496 | 88.0 | 24024 | 0.1336 | 0.7982 | 0.6483 | 0.8620 | 0.2748 | 0.0001 |
| 0.1496 | 89.0 | 24297 | 0.1337 | 0.8015 | 0.6585 | 0.8672 | 0.2807 | 0.0001 |
| 0.1493 | 90.0 | 24570 | 0.1333 | 0.8011 | 0.6621 | 0.8661 | 0.2772 | 0.0001 |
| 0.1493 | 91.0 | 24843 | 0.1337 | 0.7957 | 0.6529 | 0.8563 | 0.2782 | 0.0001 |
| 0.1496 | 92.0 | 25116 | 0.1335 | 0.7961 | 0.6514 | 0.8574 | 0.2755 | 0.0001 |
| 0.1496 | 93.0 | 25389 | 0.1331 | 0.8002 | 0.6560 | 0.8648 | 0.2758 | 0.0001 |
| 0.1493 | 94.0 | 25662 | 0.1333 | 0.7995 | 0.6554 | 0.8643 | 0.2758 | 0.0001 |
| 0.1493 | 95.0 | 25935 | 0.1331 | 0.7980 | 0.6580 | 0.8606 | 0.2758 | 0.0001 |
| 0.1482 | 96.0 | 26208 | 0.1328 | 0.7993 | 0.6556 | 0.8631 | 0.2751 | 0.0001 |
| 0.1482 | 97.0 | 26481 | 0.1333 | 0.7977 | 0.6493 | 0.8589 | 0.2782 | 0.0001 |
| 0.1497 | 98.0 | 26754 | 0.1327 | 0.7996 | 0.6600 | 0.8647 | 0.2755 | 0.0001 |
| 0.1489 | 99.0 | 27027 | 0.1325 | 0.7979 | 0.6590 | 0.8608 | 0.2717 | 0.0001 |
| 0.1489 | 100.0 | 27300 | 0.1329 | 0.7971 | 0.6570 | 0.8585 | 0.2762 | 0.0001 |
| 0.1482 | 101.0 | 27573 | 0.1327 | 0.7992 | 0.6580 | 0.8611 | 0.2821 | 0.0001 |
| 0.1482 | 102.0 | 27846 | 0.1326 | 0.7987 | 0.6543 | 0.8608 | 0.2817 | 0.0001 |
| 0.1474 | 103.0 | 28119 | 0.1325 | 0.7994 | 0.6518 | 0.8621 | 0.2803 | 0.0001 |
| 0.1474 | 104.0 | 28392 | 0.1332 | 0.8011 | 0.6613 | 0.8647 | 0.2775 | 0.0001 |
| 0.1472 | 105.0 | 28665 | 0.1322 | 0.8013 | 0.6636 | 0.8652 | 0.2831 | 0.0001 |
| 0.1472 | 106.0 | 28938 | 0.1324 | 0.8010 | 0.6588 | 0.8633 | 0.2831 | 0.0001 |
| 0.148 | 107.0 | 29211 | 0.1336 | 0.7986 | 0.6506 | 0.8619 | 0.2786 | 0.0001 |
| 0.148 | 108.0 | 29484 | 0.1327 | 0.7996 | 0.6501 | 0.8615 | 0.2796 | 0.0001 |
| 0.1477 | 109.0 | 29757 | 0.1318 | 0.8000 | 0.6580 | 0.8613 | 0.2807 | 0.0001 |
| 0.1479 | 110.0 | 30030 | 0.1326 | 0.7997 | 0.6582 | 0.8626 | 0.2803 | 0.0001 |
| 0.1479 | 111.0 | 30303 | 0.1319 | 0.8013 | 0.6609 | 0.8638 | 0.2786 | 0.0001 |
| 0.1466 | 112.0 | 30576 | 0.1322 | 0.8019 | 0.6595 | 0.8659 | 0.2810 | 0.0001 |
| 0.1466 | 113.0 | 30849 | 0.1321 | 0.8025 | 0.6592 | 0.8667 | 0.2800 | 0.0001 |
| 0.1474 | 114.0 | 31122 | 0.1320 | 0.8025 | 0.6631 | 0.8662 | 0.2824 | 0.0001 |
| 0.1474 | 115.0 | 31395 | 0.1319 | 0.8004 | 0.6598 | 0.8625 | 0.2838 | 0.0001 |
| 0.1468 | 116.0 | 31668 | 0.1319 | 0.8022 | 0.6627 | 0.8643 | 0.2845 | 1e-05 |
| 0.1468 | 117.0 | 31941 | 0.1318 | 0.8013 | 0.6604 | 0.8634 | 0.2821 | 1e-05 |
| 0.1455 | 118.0 | 32214 | 0.1316 | 0.8002 | 0.6590 | 0.8616 | 0.2796 | 1e-05 |
| 0.1455 | 119.0 | 32487 | 0.1319 | 0.8037 | 0.6608 | 0.8678 | 0.2827 | 1e-05 |
| 0.1451 | 120.0 | 32760 | 0.1316 | 0.8036 | 0.6615 | 0.8662 | 0.2814 | 1e-05 |
| 0.1454 | 121.0 | 33033 | 0.1318 | 0.8013 | 0.6611 | 0.8635 | 0.2810 | 1e-05 |
| 0.1454 | 122.0 | 33306 | 0.1322 | 0.8050 | 0.6647 | 0.8692 | 0.2817 | 1e-05 |
| 0.145 | 123.0 | 33579 | 0.1319 | 0.8010 | 0.6605 | 0.8618 | 0.2817 | 1e-05 |
| 0.145 | 124.0 | 33852 | 0.1314 | 0.8019 | 0.6622 | 0.8638 | 0.2807 | 1e-05 |
| 0.1459 | 125.0 | 34125 | 0.1314 | 0.8043 | 0.6641 | 0.8672 | 0.2862 | 1e-05 |
| 0.1459 | 126.0 | 34398 | 0.1310 | 0.8042 | 0.6630 | 0.8670 | 0.2862 | 1e-05 |
| 0.1439 | 127.0 | 34671 | 0.1315 | 0.8038 | 0.6598 | 0.8673 | 0.2859 | 1e-05 |
| 0.1439 | 128.0 | 34944 | 0.1311 | 0.8042 | 0.6682 | 0.8674 | 0.2869 | 1e-05 |
| 0.1446 | 129.0 | 35217 | 0.1310 | 0.8035 | 0.6653 | 0.8665 | 0.2827 | 1e-05 |
| 0.1446 | 130.0 | 35490 | 0.1310 | 0.8034 | 0.6657 | 0.8668 | 0.2866 | 1e-05 |
| 0.1449 | 131.0 | 35763 | 0.1313 | 0.8052 | 0.6709 | 0.8699 | 0.2834 | 1e-05 |
| 0.1442 | 132.0 | 36036 | 0.1315 | 0.7986 | 0.6558 | 0.8595 | 0.2807 | 1e-05 |
| 0.1442 | 133.0 | 36309 | 0.1311 | 0.8052 | 0.6689 | 0.8692 | 0.2879 | 1e-05 |
| 0.1443 | 134.0 | 36582 | 0.1309 | 0.8021 | 0.6648 | 0.8640 | 0.2827 | 1e-05 |
| 0.1443 | 135.0 | 36855 | 0.1315 | 0.8038 | 0.6684 | 0.8665 | 0.2869 | 1e-05 |
| 0.1438 | 136.0 | 37128 | 0.1315 | 0.8025 | 0.6590 | 0.8634 | 0.2827 | 1e-05 |
| 0.1438 | 137.0 | 37401 | 0.1311 | 0.8036 | 0.6667 | 0.8648 | 0.2859 | 1e-05 |
| 0.1452 | 138.0 | 37674 | 0.1312 | 0.8035 | 0.6666 | 0.8661 | 0.2845 | 1e-05 |
| 0.1452 | 139.0 | 37947 | 0.1310 | 0.8053 | 0.6661 | 0.8689 | 0.2897 | 1e-05 |
| 0.144 | 140.0 | 38220 | 0.1317 | 0.8020 | 0.6635 | 0.8643 | 0.2834 | 1e-05 |
| 0.144 | 141.0 | 38493 | 0.1309 | 0.8047 | 0.6688 | 0.8673 | 0.2876 | 0.0000 |
| 0.1445 | 142.0 | 38766 | 0.1310 | 0.8042 | 0.6643 | 0.8657 | 0.2859 | 0.0000 |
| 0.1441 | 143.0 | 39039 | 0.1314 | 0.8019 | 0.6623 | 0.8635 | 0.2872 | 0.0000 |
| 0.1441 | 144.0 | 39312 | 0.1312 | 0.8025 | 0.6648 | 0.8649 | 0.2838 | 0.0000 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|