File size: 9,151 Bytes
2ae096e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---
license: apache-2.0
base_model: facebook/dinov2-large
tags:
- generated_from_trainer
model-index:
- name: drone-DinoVdeau-produttoria-probabilities-large-2024_11_04-batch-size64_freeze_probs
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# drone-DinoVdeau-produttoria-probabilities-large-2024_11_04-batch-size64_freeze_probs

This model is a fine-tuned version of [facebook/dinov2-large](https://huggingface.co/facebook/dinov2-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3194
- Rmse: 0.2405
- Mae: 0.1536
- R2: 0.4281
- Explained Variance: 0.4294
- Learning Rate: 0.0000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 150
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rmse   | Mae    | R2     | Explained Variance | Rate   |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------------------:|:------:|
| No log        | 1.0   | 181   | 0.3610          | 0.2645 | 0.1878 | 0.2818 | 0.3037             | 0.001  |
| No log        | 2.0   | 362   | 0.3465          | 0.2566 | 0.1778 | 0.3349 | 0.3479             | 0.001  |
| 0.4149        | 3.0   | 543   | 0.3413          | 0.2532 | 0.1731 | 0.3536 | 0.3600             | 0.001  |
| 0.4149        | 4.0   | 724   | 0.3406          | 0.2532 | 0.1743 | 0.3519 | 0.3591             | 0.001  |
| 0.4149        | 5.0   | 905   | 0.3342          | 0.2496 | 0.1661 | 0.3702 | 0.3731             | 0.001  |
| 0.3486        | 6.0   | 1086  | 0.3385          | 0.2512 | 0.1739 | 0.3651 | 0.3724             | 0.001  |
| 0.3486        | 7.0   | 1267  | 0.3321          | 0.2476 | 0.1650 | 0.3836 | 0.3846             | 0.001  |
| 0.3486        | 8.0   | 1448  | 0.3332          | 0.2484 | 0.1629 | 0.3802 | 0.3811             | 0.001  |
| 0.3462        | 9.0   | 1629  | 0.3305          | 0.2468 | 0.1652 | 0.3859 | 0.3872             | 0.001  |
| 0.3462        | 10.0  | 1810  | 0.3314          | 0.2476 | 0.1655 | 0.3827 | 0.3850             | 0.001  |
| 0.3462        | 11.0  | 1991  | 0.3320          | 0.2474 | 0.1602 | 0.3840 | 0.3866             | 0.001  |
| 0.3391        | 12.0  | 2172  | 0.3342          | 0.2494 | 0.1683 | 0.3761 | 0.3843             | 0.001  |
| 0.3391        | 13.0  | 2353  | 0.3325          | 0.2480 | 0.1649 | 0.3821 | 0.3836             | 0.001  |
| 0.3372        | 14.0  | 2534  | 0.3323          | 0.2472 | 0.1700 | 0.3878 | 0.3930             | 0.001  |
| 0.3372        | 15.0  | 2715  | 0.3349          | 0.2493 | 0.1703 | 0.3749 | 0.3828             | 0.001  |
| 0.3372        | 16.0  | 2896  | 0.3279          | 0.2448 | 0.1649 | 0.3983 | 0.4019             | 0.0001 |
| 0.3343        | 17.0  | 3077  | 0.3279          | 0.2448 | 0.1648 | 0.3984 | 0.4041             | 0.0001 |
| 0.3343        | 18.0  | 3258  | 0.3262          | 0.2440 | 0.1622 | 0.4025 | 0.4032             | 0.0001 |
| 0.3343        | 19.0  | 3439  | 0.3247          | 0.2432 | 0.1588 | 0.4046 | 0.4051             | 0.0001 |
| 0.3271        | 20.0  | 3620  | 0.3261          | 0.2433 | 0.1625 | 0.4059 | 0.4106             | 0.0001 |
| 0.3271        | 21.0  | 3801  | 0.3241          | 0.2424 | 0.1606 | 0.4095 | 0.4119             | 0.0001 |
| 0.3271        | 22.0  | 3982  | 0.3236          | 0.2422 | 0.1587 | 0.4111 | 0.4132             | 0.0001 |
| 0.3275        | 23.0  | 4163  | 0.3242          | 0.2423 | 0.1601 | 0.4107 | 0.4134             | 0.0001 |
| 0.3275        | 24.0  | 4344  | 0.3227          | 0.2414 | 0.1586 | 0.4150 | 0.4161             | 0.0001 |
| 0.3247        | 25.0  | 4525  | 0.3224          | 0.2413 | 0.1587 | 0.4148 | 0.4162             | 0.0001 |
| 0.3247        | 26.0  | 4706  | 0.3218          | 0.2413 | 0.1557 | 0.4143 | 0.4155             | 0.0001 |
| 0.3247        | 27.0  | 4887  | 0.3227          | 0.2416 | 0.1603 | 0.4138 | 0.4154             | 0.0001 |
| 0.3231        | 28.0  | 5068  | 0.3207          | 0.2405 | 0.1562 | 0.4186 | 0.4197             | 0.0001 |
| 0.3231        | 29.0  | 5249  | 0.3221          | 0.2411 | 0.1597 | 0.4163 | 0.4175             | 0.0001 |
| 0.3231        | 30.0  | 5430  | 0.3225          | 0.2413 | 0.1608 | 0.4164 | 0.4190             | 0.0001 |
| 0.3215        | 31.0  | 5611  | 0.3224          | 0.2416 | 0.1535 | 0.4134 | 0.4164             | 0.0001 |
| 0.3215        | 32.0  | 5792  | 0.3213          | 0.2408 | 0.1553 | 0.4180 | 0.4185             | 0.0001 |
| 0.3215        | 33.0  | 5973  | 0.3216          | 0.2414 | 0.1583 | 0.4123 | 0.4142             | 0.0001 |
| 0.3227        | 34.0  | 6154  | 0.3205          | 0.2406 | 0.1562 | 0.4172 | 0.4181             | 0.0001 |
| 0.3227        | 35.0  | 6335  | 0.3198          | 0.2399 | 0.1535 | 0.4215 | 0.4224             | 0.0001 |
| 0.3202        | 36.0  | 6516  | 0.3211          | 0.2406 | 0.1577 | 0.4187 | 0.4194             | 0.0001 |
| 0.3202        | 37.0  | 6697  | 0.3204          | 0.2403 | 0.1520 | 0.4188 | 0.4203             | 0.0001 |
| 0.3202        | 38.0  | 6878  | 0.3214          | 0.2409 | 0.1560 | 0.4170 | 0.4185             | 0.0001 |
| 0.3195        | 39.0  | 7059  | 0.3195          | 0.2397 | 0.1520 | 0.4226 | 0.4232             | 0.0001 |
| 0.3195        | 40.0  | 7240  | 0.3208          | 0.2404 | 0.1577 | 0.4204 | 0.4231             | 0.0001 |
| 0.3195        | 41.0  | 7421  | 0.3198          | 0.2398 | 0.1547 | 0.4217 | 0.4233             | 0.0001 |
| 0.3192        | 42.0  | 7602  | 0.3218          | 0.2410 | 0.1589 | 0.4174 | 0.4218             | 0.0001 |
| 0.3192        | 43.0  | 7783  | 0.3190          | 0.2396 | 0.1544 | 0.4235 | 0.4254             | 0.0001 |
| 0.3192        | 44.0  | 7964  | 0.3190          | 0.2396 | 0.1534 | 0.4230 | 0.4239             | 0.0001 |
| 0.3178        | 45.0  | 8145  | 0.3198          | 0.2397 | 0.1566 | 0.4239 | 0.4260             | 0.0001 |
| 0.3178        | 46.0  | 8326  | 0.3193          | 0.2398 | 0.1556 | 0.4213 | 0.4231             | 0.0001 |
| 0.3175        | 47.0  | 8507  | 0.3190          | 0.2393 | 0.1524 | 0.4245 | 0.4257             | 0.0001 |
| 0.3175        | 48.0  | 8688  | 0.3193          | 0.2398 | 0.1525 | 0.4215 | 0.4230             | 0.0001 |
| 0.3175        | 49.0  | 8869  | 0.3207          | 0.2405 | 0.1558 | 0.4187 | 0.4196             | 0.0001 |
| 0.3174        | 50.0  | 9050  | 0.3198          | 0.2400 | 0.1572 | 0.4218 | 0.4237             | 1e-05  |
| 0.3174        | 51.0  | 9231  | 0.3244          | 0.2426 | 0.1602 | 0.4092 | 0.4173             | 1e-05  |
| 0.3174        | 52.0  | 9412  | 0.3190          | 0.2396 | 0.1550 | 0.4227 | 0.4235             | 1e-05  |
| 0.3152        | 53.0  | 9593  | 0.3189          | 0.2394 | 0.1552 | 0.4249 | 0.4270             | 1e-05  |
| 0.3152        | 54.0  | 9774  | 0.3194          | 0.2396 | 0.1540 | 0.4227 | 0.4239             | 1e-05  |
| 0.3152        | 55.0  | 9955  | 0.3185          | 0.2391 | 0.1539 | 0.4250 | 0.4258             | 1e-05  |
| 0.317         | 56.0  | 10136 | 0.3181          | 0.2388 | 0.1527 | 0.4273 | 0.4281             | 1e-05  |
| 0.317         | 57.0  | 10317 | 0.3187          | 0.2392 | 0.1532 | 0.4259 | 0.4274             | 1e-05  |
| 0.317         | 58.0  | 10498 | 0.3201          | 0.2401 | 0.1567 | 0.4217 | 0.4259             | 1e-05  |
| 0.314         | 59.0  | 10679 | 0.3181          | 0.2388 | 0.1528 | 0.4270 | 0.4282             | 1e-05  |
| 0.314         | 60.0  | 10860 | 0.3182          | 0.2389 | 0.1534 | 0.4256 | 0.4268             | 1e-05  |
| 0.314         | 61.0  | 11041 | 0.3186          | 0.2391 | 0.1510 | 0.4255 | 0.4266             | 1e-05  |
| 0.314         | 62.0  | 11222 | 0.3203          | 0.2398 | 0.1596 | 0.4240 | 0.4262             | 1e-05  |
| 0.314         | 63.0  | 11403 | 0.3196          | 0.2397 | 0.1570 | 0.4242 | 0.4276             | 1e-05  |
| 0.3142        | 64.0  | 11584 | 0.3181          | 0.2391 | 0.1527 | 0.4244 | 0.4253             | 1e-05  |
| 0.3142        | 65.0  | 11765 | 0.3185          | 0.2390 | 0.1550 | 0.4259 | 0.4264             | 1e-05  |
| 0.3142        | 66.0  | 11946 | 0.3186          | 0.2389 | 0.1562 | 0.4278 | 0.4291             | 0.0000 |
| 0.3131        | 67.0  | 12127 | 0.3181          | 0.2387 | 0.1526 | 0.4270 | 0.4279             | 0.0000 |
| 0.3131        | 68.0  | 12308 | 0.3195          | 0.2397 | 0.1549 | 0.4221 | 0.4257             | 0.0000 |
| 0.3131        | 69.0  | 12489 | 0.3183          | 0.2390 | 0.1540 | 0.4259 | 0.4275             | 0.0000 |


### Framework versions

- Transformers 4.41.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.2
- Tokenizers 0.19.1