lombardata
commited on
Commit
•
e57a489
1
Parent(s):
5decf45
Upload README.md
Browse files
README.md
CHANGED
@@ -1,107 +1,174 @@
|
|
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
4 |
tags:
|
|
|
|
|
5 |
- generated_from_trainer
|
|
|
6 |
model-index:
|
7 |
- name: drone-DinoVdeau-produttoria-probabilities-large-2024_11_06-batch-size16_freeze_probs
|
8 |
results: []
|
9 |
---
|
10 |
|
11 |
-
|
12 |
-
should probably proofread and complete it, then remove this comment. -->
|
13 |
|
14 |
-
# drone-DinoVdeau-produttoria-probabilities-large-2024_11_06-batch-size16_freeze_probs
|
15 |
|
16 |
-
This model is a fine-tuned version of [facebook/dinov2-large](https://huggingface.co/facebook/dinov2-large) on the None dataset.
|
17 |
-
It achieves the following results on the evaluation set:
|
18 |
- Loss: 0.3261
|
19 |
-
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
|
|
26 |
|
27 |
-
|
28 |
|
29 |
-
|
30 |
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
|
37 |
-
|
38 |
|
39 |
-
|
40 |
|
41 |
The following hyperparameters were used during training:
|
42 |
-
|
43 |
-
-
|
44 |
-
-
|
45 |
-
-
|
46 |
-
-
|
47 |
-
-
|
48 |
-
-
|
49 |
-
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
---
|
3 |
+
language:
|
4 |
+
- eng
|
5 |
+
license: cc0-1.0
|
6 |
tags:
|
7 |
+
- multilabel-image-classification
|
8 |
+
- multilabel
|
9 |
- generated_from_trainer
|
10 |
+
base_model: drone-DinoVdeau-produttoria-probabilities-large-2024_11_06-batch-size16_freeze_probs
|
11 |
model-index:
|
12 |
- name: drone-DinoVdeau-produttoria-probabilities-large-2024_11_06-batch-size16_freeze_probs
|
13 |
results: []
|
14 |
---
|
15 |
|
16 |
+
drone-DinoVdeau-produttoria-probabilities is a fine-tuned version of [drone-DinoVdeau-produttoria-probabilities-large-2024_11_06-batch-size16_freeze_probs](https://huggingface.co/drone-DinoVdeau-produttoria-probabilities-large-2024_11_06-batch-size16_freeze_probs). It achieves the following results on the test set:
|
|
|
17 |
|
|
|
18 |
|
|
|
|
|
19 |
- Loss: 0.3261
|
20 |
+
- F1 Micro: 0.8621
|
21 |
+
- F1 Macro: 0.8264
|
22 |
+
- Accuracy: 0.1682
|
23 |
+
- RMSE: 0.2445
|
24 |
+
- MAE: 0.1621
|
25 |
+
- R2: 0.4057
|
26 |
+
|
27 |
+
| Class | F1 per class |
|
28 |
+
|----------|-------|
|
29 |
+
| Acropore_branched | 0.8063 |
|
30 |
+
| Acropore_digitised | 0.7335 |
|
31 |
+
| Acropore_tabular | 0.6247 |
|
32 |
+
| Algae | 0.9859 |
|
33 |
+
| Dead_coral | 0.8424 |
|
34 |
+
| Fish | 0.7464 |
|
35 |
+
| Millepore | 0.6453 |
|
36 |
+
| No_acropore_encrusting | 0.7292 |
|
37 |
+
| No_acropore_massive | 0.8681 |
|
38 |
+
| No_acropore_sub_massive | 0.8092 |
|
39 |
+
| Rock | 0.9925 |
|
40 |
+
| Rubble | 0.9693 |
|
41 |
+
| Sand | 0.9904 |
|
42 |
+
|
43 |
+
|
44 |
+
---
|
45 |
|
46 |
+
# Model description
|
47 |
+
drone-DinoVdeau-produttoria-probabilities is a model built on top of drone-DinoVdeau-produttoria-probabilities-large-2024_11_06-batch-size16_freeze_probs model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.
|
48 |
|
49 |
+
The source code for training the model can be found in this [Git repository](https://github.com/SeatizenDOI/DinoVdeau).
|
50 |
|
51 |
+
- **Developed by:** [lombardata](https://huggingface.co/lombardata), credits to [César Leblanc](https://huggingface.co/CesarLeblanc) and [Victor Illien](https://huggingface.co/groderg)
|
52 |
|
53 |
+
---
|
54 |
+
|
55 |
+
# Intended uses & limitations
|
56 |
+
You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.
|
57 |
+
|
58 |
+
---
|
59 |
|
60 |
+
# Training and evaluation data
|
61 |
+
Details on the estimated number of images for each class are given in the following table:
|
62 |
+
| Class | train | test | val | Total |
|
63 |
+
|:------------------------|--------:|-------:|------:|--------:|
|
64 |
+
| Acropore_branched | 2028 | 684 | 686 | 3398 |
|
65 |
+
| Acropore_digitised | 2006 | 735 | 717 | 3458 |
|
66 |
+
| Acropore_tabular | 1237 | 461 | 451 | 2149 |
|
67 |
+
| Algae | 11086 | 3671 | 3675 | 18432 |
|
68 |
+
| Dead_coral | 6354 | 2161 | 2147 | 10662 |
|
69 |
+
| Fish | 4032 | 1430 | 1430 | 6892 |
|
70 |
+
| Millepore | 1943 | 783 | 772 | 3498 |
|
71 |
+
| No_acropore_encrusting | 2663 | 986 | 957 | 4606 |
|
72 |
+
| No_acropore_massive | 6897 | 2375 | 2375 | 11647 |
|
73 |
+
| No_acropore_sub_massive | 5416 | 1988 | 1958 | 9362 |
|
74 |
+
| Rock | 11164 | 3726 | 3725 | 18615 |
|
75 |
+
| Rubble | 10687 | 3570 | 3572 | 17829 |
|
76 |
+
| Sand | 11151 | 3726 | 3723 | 18600 |
|
77 |
|
78 |
+
---
|
79 |
|
80 |
+
# Training procedure
|
81 |
|
82 |
+
## Training hyperparameters
|
83 |
|
84 |
The following hyperparameters were used during training:
|
85 |
+
|
86 |
+
- **Number of Epochs**: 45.0
|
87 |
+
- **Learning Rate**: 0.001
|
88 |
+
- **Train Batch Size**: 16
|
89 |
+
- **Eval Batch Size**: 16
|
90 |
+
- **Optimizer**: Adam
|
91 |
+
- **LR Scheduler Type**: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
|
92 |
+
- **Freeze Encoder**: Yes
|
93 |
+
- **Data Augmentation**: Yes
|
94 |
+
|
95 |
+
|
96 |
+
## Data Augmentation
|
97 |
+
Data were augmented using the following transformations :
|
98 |
+
|
99 |
+
Train Transforms
|
100 |
+
- **PreProcess**: No additional parameters
|
101 |
+
- **Resize**: probability=1.00
|
102 |
+
- **RandomHorizontalFlip**: probability=0.25
|
103 |
+
- **RandomVerticalFlip**: probability=0.25
|
104 |
+
- **ColorJiggle**: probability=0.25
|
105 |
+
- **RandomPerspective**: probability=0.25
|
106 |
+
- **Normalize**: probability=1.00
|
107 |
+
|
108 |
+
Val Transforms
|
109 |
+
- **PreProcess**: No additional parameters
|
110 |
+
- **Resize**: probability=1.00
|
111 |
+
- **Normalize**: probability=1.00
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
## Training results
|
116 |
+
Epoch | Validation Loss | MAE | RMSE | R2 | Learning Rate
|
117 |
+
--- | --- | --- | --- | --- | ---
|
118 |
+
0 | N/A | 0.0000 | 0.0000 | 0.0000 | 0.001
|
119 |
+
1 | 0.36246591806411743 | 0.1880 | 0.2669 | 0.2744 | 0.001
|
120 |
+
2 | 0.3457428216934204 | 0.1685 | 0.2560 | 0.3367 | 0.001
|
121 |
+
3 | 0.3518487811088562 | 0.1747 | 0.2597 | 0.3157 | 0.001
|
122 |
+
4 | 0.3507988750934601 | 0.1751 | 0.2563 | 0.3345 | 0.001
|
123 |
+
5 | 0.3436409533023834 | 0.1696 | 0.2546 | 0.3371 | 0.001
|
124 |
+
6 | 0.35096481442451477 | 0.1767 | 0.2598 | 0.3175 | 0.001
|
125 |
+
7 | 0.3412320613861084 | 0.1750 | 0.2538 | 0.3471 | 0.001
|
126 |
+
8 | 0.3456409275531769 | 0.1678 | 0.2561 | 0.3435 | 0.001
|
127 |
+
9 | 0.3425351679325104 | 0.1741 | 0.2545 | 0.3409 | 0.001
|
128 |
+
10 | 0.33964109420776367 | 0.1711 | 0.2525 | 0.3583 | 0.001
|
129 |
+
11 | 0.34479108452796936 | 0.1721 | 0.2542 | 0.3498 | 0.001
|
130 |
+
12 | 0.3415849804878235 | 0.1767 | 0.2527 | 0.3577 | 0.001
|
131 |
+
13 | 0.33990854024887085 | 0.1677 | 0.2527 | 0.3523 | 0.001
|
132 |
+
14 | 0.34520208835601807 | 0.1746 | 0.2540 | 0.3443 | 0.001
|
133 |
+
15 | 0.34849879145622253 | 0.1801 | 0.2568 | 0.3333 | 0.001
|
134 |
+
16 | 0.34347954392433167 | 0.1718 | 0.2537 | 0.3473 | 0.001
|
135 |
+
17 | 0.341246634721756 | 0.1711 | 0.2508 | 0.3633 | 0.0001
|
136 |
+
18 | 0.3398562967777252 | 0.1708 | 0.2507 | 0.3649 | 0.0001
|
137 |
+
19 | 0.3332718312740326 | 0.1675 | 0.2483 | 0.3775 | 0.0001
|
138 |
+
20 | 0.333162784576416 | 0.1688 | 0.2478 | 0.3810 | 0.0001
|
139 |
+
21 | 0.3324449062347412 | 0.1673 | 0.2476 | 0.3810 | 0.0001
|
140 |
+
22 | 0.3320053517818451 | 0.1671 | 0.2472 | 0.3836 | 0.0001
|
141 |
+
23 | 0.3301050662994385 | 0.1658 | 0.2461 | 0.3890 | 0.0001
|
142 |
+
24 | 0.3298528492450714 | 0.1648 | 0.2458 | 0.3899 | 0.0001
|
143 |
+
25 | 0.32962867617607117 | 0.1641 | 0.2458 | 0.3903 | 0.0001
|
144 |
+
26 | 0.32889437675476074 | 0.1632 | 0.2454 | 0.3926 | 0.0001
|
145 |
+
27 | 0.33042922616004944 | 0.1674 | 0.2461 | 0.3891 | 0.0001
|
146 |
+
28 | 0.32880541682243347 | 0.1645 | 0.2451 | 0.3955 | 0.0001
|
147 |
+
29 | 0.3293789327144623 | 0.1656 | 0.2451 | 0.3961 | 0.0001
|
148 |
+
30 | 0.33135533332824707 | 0.1684 | 0.2464 | 0.3914 | 0.0001
|
149 |
+
31 | 0.32911789417266846 | 0.1608 | 0.2457 | 0.3904 | 0.0001
|
150 |
+
32 | 0.3289436399936676 | 0.1631 | 0.2453 | 0.3959 | 0.0001
|
151 |
+
33 | 0.3271527588367462 | 0.1628 | 0.2444 | 0.3972 | 0.0001
|
152 |
+
34 | 0.32699429988861084 | 0.1621 | 0.2443 | 0.3976 | 0.0001
|
153 |
+
35 | 0.32638314366340637 | 0.1615 | 0.2439 | 0.3987 | 0.0001
|
154 |
+
36 | 0.3293066918849945 | 0.1656 | 0.2455 | 0.3946 | 0.0001
|
155 |
+
37 | 0.3271186649799347 | 0.1597 | 0.2442 | 0.3996 | 0.0001
|
156 |
+
38 | 0.32695677876472473 | 0.1613 | 0.2437 | 0.4022 | 0.0001
|
157 |
+
39 | 0.33263665437698364 | 0.1575 | 0.2438 | 0.4007 | 0.0001
|
158 |
+
40 | 0.33278176188468933 | 0.1651 | 0.2442 | 0.4003 | 0.0001
|
159 |
+
41 | 0.33069443702697754 | 0.1627 | 0.2435 | 0.4031 | 0.0001
|
160 |
+
42 | 0.3310275375843048 | 0.1641 | 0.2436 | 0.4030 | 1e-05
|
161 |
+
43 | 0.32956016063690186 | 0.1603 | 0.2429 | 0.4052 | 1e-05
|
162 |
+
44 | 0.33022987842559814 | 0.1625 | 0.2432 | 0.4038 | 1e-05
|
163 |
+
45 | 0.3266430199146271 | 0.1617 | 0.2430 | 0.4047 | 1e-05
|
164 |
+
|
165 |
+
|
166 |
+
---
|
167 |
+
|
168 |
+
# Framework Versions
|
169 |
+
|
170 |
+
- **Transformers**: 4.41.0
|
171 |
+
- **Pytorch**: 2.5.0+cu124
|
172 |
+
- **Datasets**: 3.0.2
|
173 |
+
- **Tokenizers**: 0.19.1
|
174 |
+
|