File size: 9,866 Bytes
4834c01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
---
license: apache-2.0
base_model: facebook/dinov2-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: drone-DinoVdeau-produttoria_binary-binary-large-2024_11_03-batch-size64_freeze
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# drone-DinoVdeau-produttoria_binary-binary-large-2024_11_03-batch-size64_freeze

This model is a fine-tuned version of [facebook/dinov2-large](https://huggingface.co/facebook/dinov2-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2854
- F1 Micro: 0.8468
- F1 Macro: 0.6351
- Accuracy: 0.2786
- Learning Rate: 0.0000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 150
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | F1 Micro | F1 Macro | Accuracy | Rate   |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:--------:|:------:|
| No log        | 1.0   | 181   | 0.3236          | 0.8262   | 0.5774   | 0.2630   | 0.001  |
| No log        | 2.0   | 362   | 0.3146          | 0.8379   | 0.6199   | 0.2412   | 0.001  |
| 0.3995        | 3.0   | 543   | 0.3090          | 0.8398   | 0.6044   | 0.2555   | 0.001  |
| 0.3995        | 4.0   | 724   | 0.3074          | 0.8349   | 0.6003   | 0.2562   | 0.001  |
| 0.3995        | 5.0   | 905   | 0.3039          | 0.8406   | 0.6248   | 0.2516   | 0.001  |
| 0.3299        | 6.0   | 1086  | 0.3060          | 0.8420   | 0.6225   | 0.2596   | 0.001  |
| 0.3299        | 7.0   | 1267  | 0.3014          | 0.8387   | 0.5955   | 0.2820   | 0.001  |
| 0.3299        | 8.0   | 1448  | 0.3013          | 0.8391   | 0.5975   | 0.2703   | 0.001  |
| 0.3216        | 9.0   | 1629  | 0.3010          | 0.8407   | 0.5974   | 0.2841   | 0.001  |
| 0.3216        | 10.0  | 1810  | 0.3007          | 0.8376   | 0.5938   | 0.2711   | 0.001  |
| 0.3216        | 11.0  | 1991  | 0.3036          | 0.8349   | 0.5762   | 0.2773   | 0.001  |
| 0.3167        | 12.0  | 2172  | 0.3013          | 0.8385   | 0.6115   | 0.2674   | 0.001  |
| 0.3167        | 13.0  | 2353  | 0.2978          | 0.8421   | 0.6146   | 0.2648   | 0.001  |
| 0.315         | 14.0  | 2534  | 0.2977          | 0.8400   | 0.6059   | 0.2734   | 0.001  |
| 0.315         | 15.0  | 2715  | 0.2981          | 0.8434   | 0.6075   | 0.2666   | 0.001  |
| 0.315         | 16.0  | 2896  | 0.2974          | 0.8394   | 0.5933   | 0.2747   | 0.001  |
| 0.3147        | 17.0  | 3077  | 0.2984          | 0.8438   | 0.6147   | 0.2664   | 0.001  |
| 0.3147        | 18.0  | 3258  | 0.3023          | 0.8356   | 0.5804   | 0.2763   | 0.001  |
| 0.3147        | 19.0  | 3439  | 0.2985          | 0.8424   | 0.6159   | 0.2739   | 0.001  |
| 0.3122        | 20.0  | 3620  | 0.2968          | 0.8412   | 0.5984   | 0.2807   | 0.001  |
| 0.3122        | 21.0  | 3801  | 0.3005          | 0.8419   | 0.6060   | 0.2703   | 0.001  |
| 0.3122        | 22.0  | 3982  | 0.2982          | 0.8375   | 0.5804   | 0.2747   | 0.001  |
| 0.3149        | 23.0  | 4163  | 0.2939          | 0.8436   | 0.6152   | 0.2781   | 0.001  |
| 0.3149        | 24.0  | 4344  | 0.2948          | 0.8453   | 0.6229   | 0.2760   | 0.001  |
| 0.3118        | 25.0  | 4525  | 0.2968          | 0.8427   | 0.6103   | 0.2737   | 0.001  |
| 0.3118        | 26.0  | 4706  | 0.2956          | 0.8421   | 0.6045   | 0.2755   | 0.001  |
| 0.3118        | 27.0  | 4887  | 0.2959          | 0.8438   | 0.6115   | 0.2765   | 0.001  |
| 0.3126        | 28.0  | 5068  | 0.2955          | 0.8447   | 0.6191   | 0.2693   | 0.001  |
| 0.3126        | 29.0  | 5249  | 0.3011          | 0.8438   | 0.6216   | 0.2664   | 0.001  |
| 0.3126        | 30.0  | 5430  | 0.2921          | 0.8437   | 0.6025   | 0.2810   | 0.0001 |
| 0.3093        | 31.0  | 5611  | 0.2904          | 0.8439   | 0.6072   | 0.2812   | 0.0001 |
| 0.3093        | 32.0  | 5792  | 0.2903          | 0.8437   | 0.6112   | 0.2810   | 0.0001 |
| 0.3093        | 33.0  | 5973  | 0.2889          | 0.8462   | 0.6202   | 0.2854   | 0.0001 |
| 0.3049        | 34.0  | 6154  | 0.2896          | 0.8446   | 0.6151   | 0.2862   | 0.0001 |
| 0.3049        | 35.0  | 6335  | 0.2887          | 0.8449   | 0.6112   | 0.2867   | 0.0001 |
| 0.3012        | 36.0  | 6516  | 0.2889          | 0.8447   | 0.6120   | 0.2836   | 0.0001 |
| 0.3012        | 37.0  | 6697  | 0.2883          | 0.8476   | 0.6256   | 0.2867   | 0.0001 |
| 0.3012        | 38.0  | 6878  | 0.2905          | 0.8453   | 0.6057   | 0.2825   | 0.0001 |
| 0.299         | 39.0  | 7059  | 0.2878          | 0.8471   | 0.6254   | 0.2854   | 0.0001 |
| 0.299         | 40.0  | 7240  | 0.2886          | 0.8468   | 0.6223   | 0.2810   | 0.0001 |
| 0.299         | 41.0  | 7421  | 0.2877          | 0.8473   | 0.6261   | 0.2843   | 0.0001 |
| 0.2989        | 42.0  | 7602  | 0.2878          | 0.8477   | 0.6199   | 0.2856   | 0.0001 |
| 0.2989        | 43.0  | 7783  | 0.2872          | 0.8479   | 0.6288   | 0.2830   | 0.0001 |
| 0.2989        | 44.0  | 7964  | 0.2868          | 0.8464   | 0.6190   | 0.2841   | 0.0001 |
| 0.2983        | 45.0  | 8145  | 0.2870          | 0.8463   | 0.6236   | 0.2838   | 0.0001 |
| 0.2983        | 46.0  | 8326  | 0.2868          | 0.8460   | 0.6151   | 0.2825   | 0.0001 |
| 0.298         | 47.0  | 8507  | 0.2872          | 0.8462   | 0.6211   | 0.2846   | 0.0001 |
| 0.298         | 48.0  | 8688  | 0.2866          | 0.8467   | 0.6231   | 0.2836   | 0.0001 |
| 0.298         | 49.0  | 8869  | 0.2863          | 0.8460   | 0.6161   | 0.2859   | 0.0001 |
| 0.2965        | 50.0  | 9050  | 0.2864          | 0.8483   | 0.6255   | 0.2846   | 0.0001 |
| 0.2965        | 51.0  | 9231  | 0.2891          | 0.8486   | 0.6278   | 0.2849   | 0.0001 |
| 0.2965        | 52.0  | 9412  | 0.2856          | 0.8464   | 0.6255   | 0.2851   | 0.0001 |
| 0.2956        | 53.0  | 9593  | 0.2872          | 0.8490   | 0.6458   | 0.2789   | 0.0001 |
| 0.2956        | 54.0  | 9774  | 0.2856          | 0.8477   | 0.6244   | 0.2903   | 0.0001 |
| 0.2956        | 55.0  | 9955  | 0.2857          | 0.8475   | 0.6340   | 0.2846   | 0.0001 |
| 0.2958        | 56.0  | 10136 | 0.2862          | 0.8466   | 0.6241   | 0.2867   | 0.0001 |
| 0.2958        | 57.0  | 10317 | 0.2871          | 0.8454   | 0.6249   | 0.2862   | 0.0001 |
| 0.2958        | 58.0  | 10498 | 0.2858          | 0.8492   | 0.6334   | 0.2812   | 0.0001 |
| 0.2954        | 59.0  | 10679 | 0.2862          | 0.8468   | 0.6178   | 0.2888   | 1e-05  |
| 0.2954        | 60.0  | 10860 | 0.2847          | 0.8485   | 0.6276   | 0.2854   | 1e-05  |
| 0.2923        | 61.0  | 11041 | 0.2849          | 0.8480   | 0.6224   | 0.2830   | 1e-05  |
| 0.2923        | 62.0  | 11222 | 0.2855          | 0.8469   | 0.6248   | 0.2843   | 1e-05  |
| 0.2923        | 63.0  | 11403 | 0.2849          | 0.8489   | 0.6275   | 0.2828   | 1e-05  |
| 0.2918        | 64.0  | 11584 | 0.2846          | 0.8475   | 0.6371   | 0.2823   | 1e-05  |
| 0.2918        | 65.0  | 11765 | 0.2860          | 0.8468   | 0.6241   | 0.2869   | 1e-05  |
| 0.2918        | 66.0  | 11946 | 0.2847          | 0.8481   | 0.6347   | 0.2841   | 1e-05  |
| 0.2906        | 67.0  | 12127 | 0.2853          | 0.8488   | 0.6287   | 0.2854   | 1e-05  |
| 0.2906        | 68.0  | 12308 | 0.2853          | 0.8480   | 0.6321   | 0.2867   | 1e-05  |
| 0.2906        | 69.0  | 12489 | 0.2848          | 0.8477   | 0.6397   | 0.2836   | 1e-05  |
| 0.2918        | 70.0  | 12670 | 0.2853          | 0.8492   | 0.6381   | 0.2823   | 1e-05  |
| 0.2918        | 71.0  | 12851 | 0.2851          | 0.8476   | 0.6325   | 0.2882   | 0.0000 |
| 0.2918        | 72.0  | 13032 | 0.2845          | 0.8474   | 0.6236   | 0.2849   | 0.0000 |
| 0.2918        | 73.0  | 13213 | 0.2845          | 0.8476   | 0.6333   | 0.2812   | 0.0000 |
| 0.2918        | 74.0  | 13394 | 0.2845          | 0.8466   | 0.6300   | 0.2828   | 0.0000 |
| 0.2913        | 75.0  | 13575 | 0.2851          | 0.8474   | 0.6235   | 0.2820   | 0.0000 |
| 0.2913        | 76.0  | 13756 | 0.2860          | 0.8473   | 0.6186   | 0.2880   | 0.0000 |
| 0.2913        | 77.0  | 13937 | 0.2858          | 0.8459   | 0.6173   | 0.2856   | 0.0000 |
| 0.2913        | 78.0  | 14118 | 0.2844          | 0.8481   | 0.6326   | 0.2843   | 0.0000 |
| 0.2913        | 79.0  | 14299 | 0.2871          | 0.8472   | 0.6179   | 0.2875   | 0.0000 |
| 0.2913        | 80.0  | 14480 | 0.2848          | 0.8477   | 0.6287   | 0.2838   | 0.0000 |
| 0.2915        | 81.0  | 14661 | 0.2848          | 0.8490   | 0.6305   | 0.2854   | 0.0000 |
| 0.2915        | 82.0  | 14842 | 0.2851          | 0.8480   | 0.6394   | 0.2859   | 0.0000 |
| 0.2913        | 83.0  | 15023 | 0.2846          | 0.8488   | 0.6255   | 0.2856   | 0.0000 |
| 0.2913        | 84.0  | 15204 | 0.2857          | 0.8482   | 0.6458   | 0.2833   | 0.0000 |
| 0.2913        | 85.0  | 15385 | 0.2855          | 0.8488   | 0.6340   | 0.2812   | 0.0000 |
| 0.2922        | 86.0  | 15566 | 0.2849          | 0.8480   | 0.6363   | 0.2859   | 0.0000 |
| 0.2922        | 87.0  | 15747 | 0.2845          | 0.8474   | 0.6328   | 0.2851   | 0.0000 |
| 0.2922        | 88.0  | 15928 | 0.2854          | 0.8478   | 0.6371   | 0.2812   | 0.0000 |


### Framework versions

- Transformers 4.41.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.2
- Tokenizers 0.19.1