lombardata commited on
Commit
2703fc1
1 Parent(s): 6ee0c53

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +174 -108
README.md CHANGED
@@ -1,130 +1,196 @@
 
1
  ---
2
- license: apache-2.0
3
- base_model: facebook/dinov2-large
 
4
  tags:
 
 
5
  - generated_from_trainer
 
6
  model-index:
7
  - name: drone-DinoVdeau-produttoria_binary-probabilities-large-2024_11_03-batch-size64_freeze_probs
8
  results: []
9
  ---
10
 
11
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
- should probably proofread and complete it, then remove this comment. -->
13
 
14
- # drone-DinoVdeau-produttoria_binary-probabilities-large-2024_11_03-batch-size64_freeze_probs
15
 
16
- This model is a fine-tuned version of [facebook/dinov2-large](https://huggingface.co/facebook/dinov2-large) on the None dataset.
17
- It achieves the following results on the evaluation set:
18
  - Loss: 0.3499
19
- - Rmse: 0.1848
20
- - Mae: 0.1248
 
 
 
21
  - R2: 0.4361
22
- - Explained Variance: 0.4376
23
- - Learning Rate: 1e-05
24
 
25
- ## Model description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
- More information needed
28
 
29
- ## Intended uses & limitations
 
30
 
31
- More information needed
32
 
33
- ## Training and evaluation data
 
 
34
 
35
- More information needed
 
36
 
37
- ## Training procedure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
- ### Training hyperparameters
 
 
40
 
41
  The following hyperparameters were used during training:
42
- - learning_rate: 0.001
43
- - train_batch_size: 64
44
- - eval_batch_size: 64
45
- - seed: 42
46
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
- - lr_scheduler_type: linear
48
- - num_epochs: 150
49
- - mixed_precision_training: Native AMP
50
-
51
- ### Training results
52
-
53
- | Training Loss | Epoch | Step | Validation Loss | Rmse | Mae | R2 | Explained Variance | Rate |
54
- |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------------------:|:------:|
55
- | No log | 1.0 | 181 | 0.3795 | 0.2067 | 0.1489 | 0.2894 | 0.3009 | 0.001 |
56
- | No log | 2.0 | 362 | 0.3674 | 0.1983 | 0.1374 | 0.3517 | 0.3548 | 0.001 |
57
- | 0.4416 | 3.0 | 543 | 0.3671 | 0.1981 | 0.1414 | 0.3521 | 0.3569 | 0.001 |
58
- | 0.4416 | 4.0 | 724 | 0.3632 | 0.1952 | 0.1391 | 0.3708 | 0.3749 | 0.001 |
59
- | 0.4416 | 5.0 | 905 | 0.3679 | 0.1993 | 0.1418 | 0.3453 | 0.3614 | 0.001 |
60
- | 0.3813 | 6.0 | 1086 | 0.3625 | 0.1951 | 0.1380 | 0.3718 | 0.3743 | 0.001 |
61
- | 0.3813 | 7.0 | 1267 | 0.3619 | 0.1941 | 0.1348 | 0.3771 | 0.3837 | 0.001 |
62
- | 0.3813 | 8.0 | 1448 | 0.3613 | 0.1935 | 0.1368 | 0.3788 | 0.3809 | 0.001 |
63
- | 0.3785 | 9.0 | 1629 | 0.3604 | 0.1934 | 0.1354 | 0.3812 | 0.3833 | 0.001 |
64
- | 0.3785 | 10.0 | 1810 | 0.3613 | 0.1932 | 0.1338 | 0.3812 | 0.3844 | 0.001 |
65
- | 0.3785 | 11.0 | 1991 | 0.3604 | 0.1931 | 0.1323 | 0.3845 | 0.3857 | 0.001 |
66
- | 0.3743 | 12.0 | 2172 | 0.3618 | 0.1942 | 0.1386 | 0.3774 | 0.3844 | 0.001 |
67
- | 0.3743 | 13.0 | 2353 | 0.3593 | 0.1925 | 0.1343 | 0.3875 | 0.3894 | 0.001 |
68
- | 0.3732 | 14.0 | 2534 | 0.3605 | 0.1932 | 0.1352 | 0.3831 | 0.3863 | 0.001 |
69
- | 0.3732 | 15.0 | 2715 | 0.3605 | 0.1935 | 0.1366 | 0.3817 | 0.3836 | 0.001 |
70
- | 0.3732 | 16.0 | 2896 | 0.3600 | 0.1922 | 0.1312 | 0.3882 | 0.3910 | 0.001 |
71
- | 0.3733 | 17.0 | 3077 | 0.3629 | 0.1932 | 0.1378 | 0.3843 | 0.3882 | 0.001 |
72
- | 0.3733 | 18.0 | 3258 | 0.3615 | 0.1943 | 0.1323 | 0.3768 | 0.3840 | 0.001 |
73
- | 0.3733 | 19.0 | 3439 | 0.3595 | 0.1922 | 0.1330 | 0.3895 | 0.3911 | 0.001 |
74
- | 0.3723 | 20.0 | 3620 | 0.3566 | 0.1902 | 0.1330 | 0.4006 | 0.4041 | 0.0001 |
75
- | 0.3723 | 21.0 | 3801 | 0.3549 | 0.1890 | 0.1306 | 0.4076 | 0.4089 | 0.0001 |
76
- | 0.3723 | 22.0 | 3982 | 0.3545 | 0.1886 | 0.1308 | 0.4096 | 0.4108 | 0.0001 |
77
- | 0.3683 | 23.0 | 4163 | 0.3545 | 0.1882 | 0.1303 | 0.4116 | 0.4124 | 0.0001 |
78
- | 0.3683 | 24.0 | 4344 | 0.3540 | 0.1882 | 0.1317 | 0.4121 | 0.4131 | 0.0001 |
79
- | 0.3654 | 25.0 | 4525 | 0.3546 | 0.1883 | 0.1284 | 0.4113 | 0.4126 | 0.0001 |
80
- | 0.3654 | 26.0 | 4706 | 0.3529 | 0.1876 | 0.1264 | 0.4154 | 0.4165 | 0.0001 |
81
- | 0.3654 | 27.0 | 4887 | 0.3533 | 0.1874 | 0.1294 | 0.4166 | 0.4177 | 0.0001 |
82
- | 0.3652 | 28.0 | 5068 | 0.3532 | 0.1876 | 0.1294 | 0.4160 | 0.4169 | 0.0001 |
83
- | 0.3652 | 29.0 | 5249 | 0.3531 | 0.1871 | 0.1302 | 0.4184 | 0.4192 | 0.0001 |
84
- | 0.3652 | 30.0 | 5430 | 0.3536 | 0.1878 | 0.1292 | 0.4148 | 0.4160 | 0.0001 |
85
- | 0.3628 | 31.0 | 5611 | 0.3531 | 0.1877 | 0.1267 | 0.4152 | 0.4175 | 0.0001 |
86
- | 0.3628 | 32.0 | 5792 | 0.3528 | 0.1876 | 0.1288 | 0.4162 | 0.4168 | 0.0001 |
87
- | 0.3628 | 33.0 | 5973 | 0.3515 | 0.1864 | 0.1273 | 0.4225 | 0.4230 | 0.0001 |
88
- | 0.3638 | 34.0 | 6154 | 0.3520 | 0.1868 | 0.1263 | 0.4202 | 0.4216 | 0.0001 |
89
- | 0.3638 | 35.0 | 6335 | 0.3518 | 0.1866 | 0.1278 | 0.4215 | 0.4220 | 0.0001 |
90
- | 0.3618 | 36.0 | 6516 | 0.3523 | 0.1871 | 0.1285 | 0.4193 | 0.4196 | 0.0001 |
91
- | 0.3618 | 37.0 | 6697 | 0.3516 | 0.1866 | 0.1273 | 0.4217 | 0.4225 | 0.0001 |
92
- | 0.3618 | 38.0 | 6878 | 0.3527 | 0.1878 | 0.1274 | 0.4157 | 0.4184 | 0.0001 |
93
- | 0.3611 | 39.0 | 7059 | 0.3512 | 0.1862 | 0.1266 | 0.4242 | 0.4249 | 0.0001 |
94
- | 0.3611 | 40.0 | 7240 | 0.3521 | 0.1866 | 0.1302 | 0.4224 | 0.4237 | 0.0001 |
95
- | 0.3611 | 41.0 | 7421 | 0.3507 | 0.1858 | 0.1266 | 0.4264 | 0.4275 | 0.0001 |
96
- | 0.3613 | 42.0 | 7602 | 0.3513 | 0.1860 | 0.1278 | 0.4263 | 0.4272 | 0.0001 |
97
- | 0.3613 | 43.0 | 7783 | 0.3511 | 0.1860 | 0.1274 | 0.4262 | 0.4273 | 0.0001 |
98
- | 0.3613 | 44.0 | 7964 | 0.3514 | 0.1859 | 0.1244 | 0.4266 | 0.4282 | 0.0001 |
99
- | 0.3603 | 45.0 | 8145 | 0.3525 | 0.1863 | 0.1273 | 0.4249 | 0.4276 | 0.0001 |
100
- | 0.3603 | 46.0 | 8326 | 0.3505 | 0.1856 | 0.1258 | 0.4275 | 0.4286 | 0.0001 |
101
- | 0.3603 | 47.0 | 8507 | 0.3517 | 0.1866 | 0.1250 | 0.4231 | 0.4258 | 0.0001 |
102
- | 0.3603 | 48.0 | 8688 | 0.3504 | 0.1856 | 0.1259 | 0.4286 | 0.4292 | 0.0001 |
103
- | 0.3603 | 49.0 | 8869 | 0.3507 | 0.1857 | 0.1272 | 0.4274 | 0.4284 | 0.0001 |
104
- | 0.3604 | 50.0 | 9050 | 0.3516 | 0.1857 | 0.1283 | 0.4280 | 0.4289 | 0.0001 |
105
- | 0.3604 | 51.0 | 9231 | 0.3529 | 0.1867 | 0.1288 | 0.4227 | 0.4282 | 0.0001 |
106
- | 0.3604 | 52.0 | 9412 | 0.3506 | 0.1857 | 0.1268 | 0.4282 | 0.4295 | 0.0001 |
107
- | 0.3592 | 53.0 | 9593 | 0.3505 | 0.1856 | 0.1273 | 0.4286 | 0.4302 | 0.0001 |
108
- | 0.3592 | 54.0 | 9774 | 0.3502 | 0.1854 | 0.1266 | 0.4300 | 0.4304 | 0.0001 |
109
- | 0.3592 | 55.0 | 9955 | 0.3501 | 0.1854 | 0.1251 | 0.4299 | 0.4319 | 0.0001 |
110
- | 0.3601 | 56.0 | 10136 | 0.3507 | 0.1858 | 0.1243 | 0.4273 | 0.4294 | 0.0001 |
111
- | 0.3601 | 57.0 | 10317 | 0.3509 | 0.1860 | 0.1253 | 0.4274 | 0.4297 | 0.0001 |
112
- | 0.3601 | 58.0 | 10498 | 0.3493 | 0.1846 | 0.1251 | 0.4338 | 0.4354 | 0.0001 |
113
- | 0.3601 | 59.0 | 10679 | 0.3501 | 0.1855 | 0.1241 | 0.4282 | 0.4299 | 0.0001 |
114
- | 0.3601 | 60.0 | 10860 | 0.3501 | 0.1852 | 0.1259 | 0.4303 | 0.4325 | 0.0001 |
115
- | 0.3588 | 61.0 | 11041 | 0.3498 | 0.1850 | 0.1264 | 0.4305 | 0.4310 | 0.0001 |
116
- | 0.3588 | 62.0 | 11222 | 0.3498 | 0.1850 | 0.1265 | 0.4323 | 0.4333 | 0.0001 |
117
- | 0.3588 | 63.0 | 11403 | 0.3502 | 0.1851 | 0.1270 | 0.4321 | 0.4339 | 0.0001 |
118
- | 0.3579 | 64.0 | 11584 | 0.3500 | 0.1853 | 0.1256 | 0.4300 | 0.4312 | 0.0001 |
119
- | 0.3579 | 65.0 | 11765 | 0.3501 | 0.1854 | 0.1280 | 0.4299 | 0.4304 | 1e-05 |
120
- | 0.3579 | 66.0 | 11946 | 0.3493 | 0.1847 | 0.1253 | 0.4336 | 0.4342 | 1e-05 |
121
- | 0.3564 | 67.0 | 12127 | 0.3494 | 0.1847 | 0.1261 | 0.4334 | 0.4340 | 1e-05 |
122
- | 0.3564 | 68.0 | 12308 | 0.3500 | 0.1856 | 0.1261 | 0.4291 | 0.4307 | 1e-05 |
123
-
124
-
125
- ### Framework versions
126
-
127
- - Transformers 4.41.0
128
- - Pytorch 2.5.0+cu124
129
- - Datasets 3.0.2
130
- - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
  ---
3
+ language:
4
+ - eng
5
+ license: cc0-1.0
6
  tags:
7
+ - multilabel-image-classification
8
+ - multilabel
9
  - generated_from_trainer
10
+ base_model: drone-DinoVdeau-produttoria_binary-probabilities-large-2024_11_03-batch-size64_freeze_probs
11
  model-index:
12
  - name: drone-DinoVdeau-produttoria_binary-probabilities-large-2024_11_03-batch-size64_freeze_probs
13
  results: []
14
  ---
15
 
16
+ drone-DinoVdeau-produttoria_binary-probabilities is a fine-tuned version of [drone-DinoVdeau-produttoria_binary-probabilities-large-2024_11_03-batch-size64_freeze_probs](https://huggingface.co/drone-DinoVdeau-produttoria_binary-probabilities-large-2024_11_03-batch-size64_freeze_probs). It achieves the following results on the test set:
 
17
 
 
18
 
 
 
19
  - Loss: 0.3499
20
+ - F1 Micro: 0.8642
21
+ - F1 Macro: 0.7488
22
+ - Accuracy: 0.1948
23
+ - RMSE: 0.1848
24
+ - MAE: 0.1248
25
  - R2: 0.4361
 
 
26
 
27
+ | Class | F1 per class |
28
+ |----------|-------|
29
+ | Acropore_branched | 0.7745 |
30
+ | Acropore_digitised | 0.5393 |
31
+ | Acropore_tabular | 0.4310 |
32
+ | Algae | 0.9823 |
33
+ | Dead_coral | 0.7850 |
34
+ | Fish | 0.6550 |
35
+ | Millepore | 0.4152 |
36
+ | No_acropore_encrusting | 0.6755 |
37
+ | No_acropore_massive | 0.7954 |
38
+ | No_acropore_sub_massive | 0.7421 |
39
+ | Rock | 0.9888 |
40
+ | Rubble | 0.9645 |
41
+ | Sand | 0.9853 |
42
+
43
 
44
+ ---
45
 
46
+ # Model description
47
+ drone-DinoVdeau-produttoria_binary-probabilities is a model built on top of drone-DinoVdeau-produttoria_binary-probabilities-large-2024_11_03-batch-size64_freeze_probs model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.
48
 
49
+ The source code for training the model can be found in this [Git repository](https://github.com/SeatizenDOI/DinoVdeau).
50
 
51
+ - **Developed by:** [lombardata](https://huggingface.co/lombardata), credits to [César Leblanc](https://huggingface.co/CesarLeblanc) and [Victor Illien](https://huggingface.co/groderg)
52
+
53
+ ---
54
 
55
+ # Intended uses & limitations
56
+ You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.
57
 
58
+ ---
59
+
60
+ # Training and evaluation data
61
+ Details on the estimated number of images for each class are given in the following table:
62
+ | Class | train | test | val | Total |
63
+ |:------------------------|--------:|-------:|------:|--------:|
64
+ | Acropore_branched | 1282 | 458 | 480 | 2220 |
65
+ | Acropore_digitised | 800 | 276 | 253 | 1329 |
66
+ | Acropore_tabular | 377 | 133 | 135 | 645 |
67
+ | Algae | 9284 | 3133 | 3167 | 15584 |
68
+ | Dead_coral | 3207 | 1097 | 1103 | 5407 |
69
+ | Fish | 1360 | 481 | 487 | 2328 |
70
+ | Millepore | 258 | 110 | 94 | 462 |
71
+ | No_acropore_encrusting | 981 | 403 | 407 | 1791 |
72
+ | No_acropore_massive | 3261 | 1225 | 1291 | 5777 |
73
+ | No_acropore_sub_massive | 2371 | 857 | 889 | 4117 |
74
+ | Rock | 10077 | 3388 | 3402 | 16867 |
75
+ | Rubble | 8590 | 2880 | 2878 | 14348 |
76
+ | Sand | 9880 | 3283 | 3311 | 16474 |
77
+
78
+ ---
79
 
80
+ # Training procedure
81
+
82
+ ## Training hyperparameters
83
 
84
  The following hyperparameters were used during training:
85
+
86
+ - **Number of Epochs**: 68.0
87
+ - **Learning Rate**: 0.001
88
+ - **Train Batch Size**: 64
89
+ - **Eval Batch Size**: 64
90
+ - **Optimizer**: Adam
91
+ - **LR Scheduler Type**: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
92
+ - **Freeze Encoder**: Yes
93
+ - **Data Augmentation**: Yes
94
+
95
+
96
+ ## Data Augmentation
97
+ Data were augmented using the following transformations :
98
+
99
+ Train Transforms
100
+ - **PreProcess**: No additional parameters
101
+ - **Resize**: probability=1.00
102
+ - **RandomHorizontalFlip**: probability=0.25
103
+ - **RandomVerticalFlip**: probability=0.25
104
+ - **ColorJiggle**: probability=0.25
105
+ - **RandomPerspective**: probability=0.25
106
+ - **Normalize**: probability=1.00
107
+
108
+ Val Transforms
109
+ - **PreProcess**: No additional parameters
110
+ - **Resize**: probability=1.00
111
+ - **Normalize**: probability=1.00
112
+
113
+
114
+
115
+ ## Training results
116
+ Epoch | Validation Loss | MAE | RMSE | R2 | Learning Rate
117
+ --- | --- | --- | --- | --- | ---
118
+ 1 | 0.3794757127761841 | 0.14892756938934326 | 0.20668388903141022 | 0.2894136607646942 | 0.001
119
+ 2 | 0.3673744201660156 | 0.1374034583568573 | 0.198309525847435 | 0.35173478722572327 | 0.001
120
+ 3 | 0.3671453297138214 | 0.1413687765598297 | 0.198079913854599 | 0.35207054018974304 | 0.001
121
+ 4 | 0.36317145824432373 | 0.1391323208808899 | 0.19521364569664001 | 0.3708474040031433 | 0.001
122
+ 5 | 0.3678734302520752 | 0.141828715801239 | 0.19933271408081055 | 0.3453221321105957 | 0.001
123
+ 6 | 0.36250030994415283 | 0.13803647458553314 | 0.19508354365825653 | 0.37177884578704834 | 0.001
124
+ 7 | 0.36188462376594543 | 0.1347939670085907 | 0.19410446286201477 | 0.3771490454673767 | 0.001
125
+ 8 | 0.36125126481056213 | 0.13681310415267944 | 0.19354337453842163 | 0.37883251905441284 | 0.001
126
+ 9 | 0.3603876233100891 | 0.135352224111557 | 0.19339486956596375 | 0.3812035918235779 | 0.001
127
+ 10 | 0.3612792491912842 | 0.13375206291675568 | 0.19321060180664062 | 0.38122493028640747 | 0.001
128
+ 11 | 0.3603772521018982 | 0.13226205110549927 | 0.19312407076358795 | 0.3844555616378784 | 0.001
129
+ 12 | 0.361823707818985 | 0.13859649002552032 | 0.1941623091697693 | 0.3774065375328064 | 0.001
130
+ 13 | 0.35931822657585144 | 0.13433586061000824 | 0.1924724578857422 | 0.3875495195388794 | 0.001
131
+ 14 | 0.3604746460914612 | 0.13521355390548706 | 0.19319292902946472 | 0.38306838274002075 | 0.001
132
+ 15 | 0.36050480604171753 | 0.13660094141960144 | 0.19354429841041565 | 0.3816676735877991 | 0.001
133
+ 16 | 0.3599933683872223 | 0.13121920824050903 | 0.1921611875295639 | 0.388213574886322 | 0.001
134
+ 17 | 0.3628774583339691 | 0.13783428072929382 | 0.1932491511106491 | 0.38425371050834656 | 0.001
135
+ 18 | 0.36154037714004517 | 0.1323489546775818 | 0.19430074095726013 | 0.37684857845306396 | 0.001
136
+ 19 | 0.3594801127910614 | 0.13296250998973846 | 0.19218452274799347 | 0.38950252532958984 | 0.001
137
+ 20 | 0.3565874397754669 | 0.13302744925022125 | 0.19017010927200317 | 0.40064936876296997 | 0.0001
138
+ 21 | 0.35486647486686707 | 0.13062793016433716 | 0.18895885348320007 | 0.40758493542671204 | 0.0001
139
+ 22 | 0.35447388887405396 | 0.13081100583076477 | 0.18863680958747864 | 0.4096067547798157 | 0.0001
140
+ 23 | 0.3544616997241974 | 0.13033078610897064 | 0.18823565542697906 | 0.411631315946579 | 0.0001
141
+ 24 | 0.3539991080760956 | 0.1316699981689453 | 0.1881898045539856 | 0.4120980501174927 | 0.0001
142
+ 25 | 0.3545873463153839 | 0.12844440340995789 | 0.18831981718540192 | 0.41126883029937744 | 0.0001
143
+ 26 | 0.3529074192047119 | 0.1263934224843979 | 0.18757320940494537 | 0.4154190421104431 | 0.0001
144
+ 27 | 0.3532767593860626 | 0.129387766122818 | 0.187411367893219 | 0.41658732295036316 | 0.0001
145
+ 28 | 0.3532498776912689 | 0.12938687205314636 | 0.18755248188972473 | 0.41600102186203003 | 0.0001
146
+ 29 | 0.35306474566459656 | 0.1302015781402588 | 0.1871432662010193 | 0.41835859417915344 | 0.0001
147
+ 30 | 0.3536038398742676 | 0.1291646808385849 | 0.18775980174541473 | 0.414754718542099 | 0.0001
148
+ 31 | 0.3530591130256653 | 0.1267225444316864 | 0.1876552253961563 | 0.415239542722702 | 0.0001
149
+ 32 | 0.3528367877006531 | 0.12877780199050903 | 0.18764065206050873 | 0.4161965548992157 | 0.0001
150
+ 33 | 0.35152381658554077 | 0.12729588150978088 | 0.18640562891960144 | 0.4225224256515503 | 0.0001
151
+ 34 | 0.35195404291152954 | 0.12629321217536926 | 0.18677598237991333 | 0.4202421009540558 | 0.0001
152
+ 35 | 0.35178276896476746 | 0.12782610952854156 | 0.18657900393009186 | 0.42147499322891235 | 0.0001
153
+ 36 | 0.35231974720954895 | 0.12849368155002594 | 0.18713095784187317 | 0.4192589223384857 | 0.0001
154
+ 37 | 0.3515876829624176 | 0.12726719677448273 | 0.18659605085849762 | 0.4216739237308502 | 0.0001
155
+ 38 | 0.35274896025657654 | 0.12742024660110474 | 0.1878250390291214 | 0.41570571064949036 | 0.0001
156
+ 39 | 0.35124146938323975 | 0.12662582099437714 | 0.18624022603034973 | 0.4241558611392975 | 0.0001
157
+ 40 | 0.35209622979164124 | 0.13019172847270966 | 0.18663105368614197 | 0.4224165081977844 | 0.0001
158
+ 41 | 0.35067644715309143 | 0.1265629082918167 | 0.18584123253822327 | 0.42641735076904297 | 0.0001
159
+ 42 | 0.3512935936450958 | 0.12775851786136627 | 0.18596960604190826 | 0.4262687563896179 | 0.0001
160
+ 43 | 0.3510710895061493 | 0.12741515040397644 | 0.1859511435031891 | 0.42624664306640625 | 0.0001
161
+ 44 | 0.35139599442481995 | 0.12441141903400421 | 0.18587811291217804 | 0.4265681505203247 | 0.0001
162
+ 45 | 0.35247302055358887 | 0.127328023314476 | 0.18626871705055237 | 0.42492759227752686 | 0.0001
163
+ 46 | 0.3505423069000244 | 0.12581512331962585 | 0.18559609353542328 | 0.4274958372116089 | 0.0001
164
+ 47 | 0.3517468571662903 | 0.1250177025794983 | 0.18658187985420227 | 0.4231443405151367 | 0.0001
165
+ 48 | 0.35043978691101074 | 0.12591718137264252 | 0.18564504384994507 | 0.42857199907302856 | 0.0001
166
+ 49 | 0.35074281692504883 | 0.12717720866203308 | 0.1857146918773651 | 0.4274061322212219 | 0.0001
167
+ 50 | 0.3515849709510803 | 0.1283276230096817 | 0.1857057511806488 | 0.42797213792800903 | 0.0001
168
+ 51 | 0.35289809107780457 | 0.1288221776485443 | 0.1866857409477234 | 0.42265036702156067 | 0.0001
169
+ 52 | 0.3505743443965912 | 0.12677451968193054 | 0.18569740653038025 | 0.4281761944293976 | 0.0001
170
+ 53 | 0.35052910447120667 | 0.1273086667060852 | 0.18561594188213348 | 0.4285990595817566 | 0.0001
171
+ 54 | 0.35016006231307983 | 0.12655657529830933 | 0.1853920817375183 | 0.4299810826778412 | 0.0001
172
+ 55 | 0.35006165504455566 | 0.12509843707084656 | 0.18541744351387024 | 0.42986157536506653 | 0.0001
173
+ 56 | 0.35072585940361023 | 0.12430255115032196 | 0.18582786619663239 | 0.4273306131362915 | 0.0001
174
+ 57 | 0.3508891463279724 | 0.12534378468990326 | 0.18598994612693787 | 0.4273567497730255 | 0.0001
175
+ 58 | 0.3492669463157654 | 0.12510134279727936 | 0.1846422404050827 | 0.4338167607784271 | 0.0001
176
+ 59 | 0.3500733971595764 | 0.12414979934692383 | 0.18548892438411713 | 0.42818644642829895 | 0.0001
177
+ 60 | 0.350059449672699 | 0.12591439485549927 | 0.18521927297115326 | 0.43032628297805786 | 0.0001
178
+ 61 | 0.34978389739990234 | 0.126389279961586 | 0.18503333628177643 | 0.43050628900527954 | 0.0001
179
+ 62 | 0.34984564781188965 | 0.1265084147453308 | 0.18499605357646942 | 0.4322562515735626 | 0.0001
180
+ 63 | 0.35018646717071533 | 0.1270289421081543 | 0.18513011932373047 | 0.4321424067020416 | 0.0001
181
+ 64 | 0.34996479749679565 | 0.12558279931545258 | 0.1853456199169159 | 0.43004974722862244 | 0.0001
182
+ 65 | 0.3501463234424591 | 0.1280103474855423 | 0.1853969395160675 | 0.42989540100097656 | 1e-05
183
+ 66 | 0.34930846095085144 | 0.1253172904253006 | 0.1847212016582489 | 0.43362313508987427 | 1e-05
184
+ 67 | 0.3493542969226837 | 0.12613731622695923 | 0.18472003936767578 | 0.43344247341156006 | 1e-05
185
+ 68 | 0.3500206172466278 | 0.12607118487358093 | 0.18558326363563538 | 0.4291488826274872 | 1e-05
186
+
187
+
188
+ ---
189
+
190
+ # Framework Versions
191
+
192
+ - **Transformers**: 4.41.0
193
+ - **Pytorch**: 2.5.0+cu124
194
+ - **Datasets**: 3.0.2
195
+ - **Tokenizers**: 0.19.1
196
+