--- language: - eng license: cc0-1.0 tags: - multilabel-image-classification - multilabel - generated_from_trainer base_model: drone-DinoVdeau-produttoria_binary-probabilities-large-2024_11_03-batch-size64_freeze_probs model-index: - name: drone-DinoVdeau-produttoria_binary-probabilities-large-2024_11_03-batch-size64_freeze_probs results: [] --- drone-DinoVdeau-produttoria_binary-probabilities is a fine-tuned version of [drone-DinoVdeau-produttoria_binary-probabilities-large-2024_11_03-batch-size64_freeze_probs](https://huggingface.co/drone-DinoVdeau-produttoria_binary-probabilities-large-2024_11_03-batch-size64_freeze_probs). It achieves the following results on the test set: - Loss: 0.3499 - F1 Micro: 0.8642 - F1 Macro: 0.7488 - Accuracy: 0.1948 - RMSE: 0.1848 - MAE: 0.1248 - R2: 0.4361 | Class | F1 per class | |----------|-------| | Acropore_branched | 0.7745 | | Acropore_digitised | 0.5393 | | Acropore_tabular | 0.4310 | | Algae | 0.9823 | | Dead_coral | 0.7850 | | Fish | 0.6550 | | Millepore | 0.4152 | | No_acropore_encrusting | 0.6755 | | No_acropore_massive | 0.7954 | | No_acropore_sub_massive | 0.7421 | | Rock | 0.9888 | | Rubble | 0.9645 | | Sand | 0.9853 | --- # Model description drone-DinoVdeau-produttoria_binary-probabilities is a model built on top of drone-DinoVdeau-produttoria_binary-probabilities-large-2024_11_03-batch-size64_freeze_probs model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers. The source code for training the model can be found in this [Git repository](https://github.com/SeatizenDOI/DinoVdeau). - **Developed by:** [lombardata](https://huggingface.co/lombardata), credits to [César Leblanc](https://huggingface.co/CesarLeblanc) and [Victor Illien](https://huggingface.co/groderg) --- # Intended uses & limitations You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species. --- # Training and evaluation data Details on the estimated number of images for each class are given in the following table: | Class | train | test | val | Total | |:------------------------|--------:|-------:|------:|--------:| | Acropore_branched | 1282 | 458 | 480 | 2220 | | Acropore_digitised | 800 | 276 | 253 | 1329 | | Acropore_tabular | 377 | 133 | 135 | 645 | | Algae | 9284 | 3133 | 3167 | 15584 | | Dead_coral | 3207 | 1097 | 1103 | 5407 | | Fish | 1360 | 481 | 487 | 2328 | | Millepore | 258 | 110 | 94 | 462 | | No_acropore_encrusting | 981 | 403 | 407 | 1791 | | No_acropore_massive | 3261 | 1225 | 1291 | 5777 | | No_acropore_sub_massive | 2371 | 857 | 889 | 4117 | | Rock | 10077 | 3388 | 3402 | 16867 | | Rubble | 8590 | 2880 | 2878 | 14348 | | Sand | 9880 | 3283 | 3311 | 16474 | --- # Training procedure ## Training hyperparameters The following hyperparameters were used during training: - **Number of Epochs**: 68.0 - **Learning Rate**: 0.001 - **Train Batch Size**: 64 - **Eval Batch Size**: 64 - **Optimizer**: Adam - **LR Scheduler Type**: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1 - **Freeze Encoder**: Yes - **Data Augmentation**: Yes ## Data Augmentation Data were augmented using the following transformations : Train Transforms - **PreProcess**: No additional parameters - **Resize**: probability=1.00 - **RandomHorizontalFlip**: probability=0.25 - **RandomVerticalFlip**: probability=0.25 - **ColorJiggle**: probability=0.25 - **RandomPerspective**: probability=0.25 - **Normalize**: probability=1.00 Val Transforms - **PreProcess**: No additional parameters - **Resize**: probability=1.00 - **Normalize**: probability=1.00 ## Training results Epoch | Validation Loss | MAE | RMSE | R2 | Learning Rate --- | --- | --- | --- | --- | --- 1 | 0.3794757127761841 | 0.14892756938934326 | 0.20668388903141022 | 0.2894136607646942 | 0.001 2 | 0.3673744201660156 | 0.1374034583568573 | 0.198309525847435 | 0.35173478722572327 | 0.001 3 | 0.3671453297138214 | 0.1413687765598297 | 0.198079913854599 | 0.35207054018974304 | 0.001 4 | 0.36317145824432373 | 0.1391323208808899 | 0.19521364569664001 | 0.3708474040031433 | 0.001 5 | 0.3678734302520752 | 0.141828715801239 | 0.19933271408081055 | 0.3453221321105957 | 0.001 6 | 0.36250030994415283 | 0.13803647458553314 | 0.19508354365825653 | 0.37177884578704834 | 0.001 7 | 0.36188462376594543 | 0.1347939670085907 | 0.19410446286201477 | 0.3771490454673767 | 0.001 8 | 0.36125126481056213 | 0.13681310415267944 | 0.19354337453842163 | 0.37883251905441284 | 0.001 9 | 0.3603876233100891 | 0.135352224111557 | 0.19339486956596375 | 0.3812035918235779 | 0.001 10 | 0.3612792491912842 | 0.13375206291675568 | 0.19321060180664062 | 0.38122493028640747 | 0.001 11 | 0.3603772521018982 | 0.13226205110549927 | 0.19312407076358795 | 0.3844555616378784 | 0.001 12 | 0.361823707818985 | 0.13859649002552032 | 0.1941623091697693 | 0.3774065375328064 | 0.001 13 | 0.35931822657585144 | 0.13433586061000824 | 0.1924724578857422 | 0.3875495195388794 | 0.001 14 | 0.3604746460914612 | 0.13521355390548706 | 0.19319292902946472 | 0.38306838274002075 | 0.001 15 | 0.36050480604171753 | 0.13660094141960144 | 0.19354429841041565 | 0.3816676735877991 | 0.001 16 | 0.3599933683872223 | 0.13121920824050903 | 0.1921611875295639 | 0.388213574886322 | 0.001 17 | 0.3628774583339691 | 0.13783428072929382 | 0.1932491511106491 | 0.38425371050834656 | 0.001 18 | 0.36154037714004517 | 0.1323489546775818 | 0.19430074095726013 | 0.37684857845306396 | 0.001 19 | 0.3594801127910614 | 0.13296250998973846 | 0.19218452274799347 | 0.38950252532958984 | 0.001 20 | 0.3565874397754669 | 0.13302744925022125 | 0.19017010927200317 | 0.40064936876296997 | 0.0001 21 | 0.35486647486686707 | 0.13062793016433716 | 0.18895885348320007 | 0.40758493542671204 | 0.0001 22 | 0.35447388887405396 | 0.13081100583076477 | 0.18863680958747864 | 0.4096067547798157 | 0.0001 23 | 0.3544616997241974 | 0.13033078610897064 | 0.18823565542697906 | 0.411631315946579 | 0.0001 24 | 0.3539991080760956 | 0.1316699981689453 | 0.1881898045539856 | 0.4120980501174927 | 0.0001 25 | 0.3545873463153839 | 0.12844440340995789 | 0.18831981718540192 | 0.41126883029937744 | 0.0001 26 | 0.3529074192047119 | 0.1263934224843979 | 0.18757320940494537 | 0.4154190421104431 | 0.0001 27 | 0.3532767593860626 | 0.129387766122818 | 0.187411367893219 | 0.41658732295036316 | 0.0001 28 | 0.3532498776912689 | 0.12938687205314636 | 0.18755248188972473 | 0.41600102186203003 | 0.0001 29 | 0.35306474566459656 | 0.1302015781402588 | 0.1871432662010193 | 0.41835859417915344 | 0.0001 30 | 0.3536038398742676 | 0.1291646808385849 | 0.18775980174541473 | 0.414754718542099 | 0.0001 31 | 0.3530591130256653 | 0.1267225444316864 | 0.1876552253961563 | 0.415239542722702 | 0.0001 32 | 0.3528367877006531 | 0.12877780199050903 | 0.18764065206050873 | 0.4161965548992157 | 0.0001 33 | 0.35152381658554077 | 0.12729588150978088 | 0.18640562891960144 | 0.4225224256515503 | 0.0001 34 | 0.35195404291152954 | 0.12629321217536926 | 0.18677598237991333 | 0.4202421009540558 | 0.0001 35 | 0.35178276896476746 | 0.12782610952854156 | 0.18657900393009186 | 0.42147499322891235 | 0.0001 36 | 0.35231974720954895 | 0.12849368155002594 | 0.18713095784187317 | 0.4192589223384857 | 0.0001 37 | 0.3515876829624176 | 0.12726719677448273 | 0.18659605085849762 | 0.4216739237308502 | 0.0001 38 | 0.35274896025657654 | 0.12742024660110474 | 0.1878250390291214 | 0.41570571064949036 | 0.0001 39 | 0.35124146938323975 | 0.12662582099437714 | 0.18624022603034973 | 0.4241558611392975 | 0.0001 40 | 0.35209622979164124 | 0.13019172847270966 | 0.18663105368614197 | 0.4224165081977844 | 0.0001 41 | 0.35067644715309143 | 0.1265629082918167 | 0.18584123253822327 | 0.42641735076904297 | 0.0001 42 | 0.3512935936450958 | 0.12775851786136627 | 0.18596960604190826 | 0.4262687563896179 | 0.0001 43 | 0.3510710895061493 | 0.12741515040397644 | 0.1859511435031891 | 0.42624664306640625 | 0.0001 44 | 0.35139599442481995 | 0.12441141903400421 | 0.18587811291217804 | 0.4265681505203247 | 0.0001 45 | 0.35247302055358887 | 0.127328023314476 | 0.18626871705055237 | 0.42492759227752686 | 0.0001 46 | 0.3505423069000244 | 0.12581512331962585 | 0.18559609353542328 | 0.4274958372116089 | 0.0001 47 | 0.3517468571662903 | 0.1250177025794983 | 0.18658187985420227 | 0.4231443405151367 | 0.0001 48 | 0.35043978691101074 | 0.12591718137264252 | 0.18564504384994507 | 0.42857199907302856 | 0.0001 49 | 0.35074281692504883 | 0.12717720866203308 | 0.1857146918773651 | 0.4274061322212219 | 0.0001 50 | 0.3515849709510803 | 0.1283276230096817 | 0.1857057511806488 | 0.42797213792800903 | 0.0001 51 | 0.35289809107780457 | 0.1288221776485443 | 0.1866857409477234 | 0.42265036702156067 | 0.0001 52 | 0.3505743443965912 | 0.12677451968193054 | 0.18569740653038025 | 0.4281761944293976 | 0.0001 53 | 0.35052910447120667 | 0.1273086667060852 | 0.18561594188213348 | 0.4285990595817566 | 0.0001 54 | 0.35016006231307983 | 0.12655657529830933 | 0.1853920817375183 | 0.4299810826778412 | 0.0001 55 | 0.35006165504455566 | 0.12509843707084656 | 0.18541744351387024 | 0.42986157536506653 | 0.0001 56 | 0.35072585940361023 | 0.12430255115032196 | 0.18582786619663239 | 0.4273306131362915 | 0.0001 57 | 0.3508891463279724 | 0.12534378468990326 | 0.18598994612693787 | 0.4273567497730255 | 0.0001 58 | 0.3492669463157654 | 0.12510134279727936 | 0.1846422404050827 | 0.4338167607784271 | 0.0001 59 | 0.3500733971595764 | 0.12414979934692383 | 0.18548892438411713 | 0.42818644642829895 | 0.0001 60 | 0.350059449672699 | 0.12591439485549927 | 0.18521927297115326 | 0.43032628297805786 | 0.0001 61 | 0.34978389739990234 | 0.126389279961586 | 0.18503333628177643 | 0.43050628900527954 | 0.0001 62 | 0.34984564781188965 | 0.1265084147453308 | 0.18499605357646942 | 0.4322562515735626 | 0.0001 63 | 0.35018646717071533 | 0.1270289421081543 | 0.18513011932373047 | 0.4321424067020416 | 0.0001 64 | 0.34996479749679565 | 0.12558279931545258 | 0.1853456199169159 | 0.43004974722862244 | 0.0001 65 | 0.3501463234424591 | 0.1280103474855423 | 0.1853969395160675 | 0.42989540100097656 | 1e-05 66 | 0.34930846095085144 | 0.1253172904253006 | 0.1847212016582489 | 0.43362313508987427 | 1e-05 67 | 0.3493542969226837 | 0.12613731622695923 | 0.18472003936767578 | 0.43344247341156006 | 1e-05 68 | 0.3500206172466278 | 0.12607118487358093 | 0.18558326363563538 | 0.4291488826274872 | 1e-05 --- # Framework Versions - **Transformers**: 4.41.0 - **Pytorch**: 2.5.0+cu124 - **Datasets**: 3.0.2 - **Tokenizers**: 0.19.1