--- license: apache-2.0 base_model: microsoft/resnet-50 tags: - generated_from_trainer metrics: - accuracy model-index: - name: resnet-50-2024_09_13-batch-size32_epochs150_freeze results: [] --- # resnet-50-2024_09_13-batch-size32_epochs150_freeze This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan - F1 Micro: 0.0002 - F1 Macro: 0.0002 - Roc Auc: 0.4995 - Accuracy: 0.0003 - Learning Rate: 0.0001 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 150 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Micro | F1 Macro | Roc Auc | Accuracy | Rate | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-------:|:--------:|:------:| | No log | 1.0 | 273 | nan | 0.0 | 0.0 | 0.4995 | 0.0 | 0.001 | | 0.0 | 2.0 | 546 | nan | 0.0003 | 0.0004 | 0.4993 | 0.0007 | 0.001 | | 0.0 | 3.0 | 819 | nan | 0.0008 | 0.0010 | 0.4994 | 0.0017 | 0.001 | | 0.0 | 4.0 | 1092 | nan | 0.0 | 0.0 | 0.4991 | 0.0 | 0.001 | | 0.0 | 5.0 | 1365 | nan | 0.0005 | 0.0006 | 0.4994 | 0.0010 | 0.001 | | 0.0 | 6.0 | 1638 | nan | 0.0002 | 0.0002 | 0.4993 | 0.0003 | 0.001 | | 0.0 | 7.0 | 1911 | nan | 0.0 | 0.0 | 0.4993 | 0.0 | 0.0001 | | 0.0 | 8.0 | 2184 | nan | 0.0002 | 0.0002 | 0.4993 | 0.0003 | 0.0001 | | 0.0 | 9.0 | 2457 | nan | 0.0 | 0.0 | 0.4994 | 0.0 | 0.0001 | | 0.0 | 10.0 | 2730 | nan | 0.0003 | 0.0004 | 0.4994 | 0.0007 | 0.0001 | | 0.0 | 11.0 | 3003 | nan | 0.0 | 0.0 | 0.4994 | 0.0 | 0.0001 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1