Update README.md
Browse files
README.md
CHANGED
@@ -23,11 +23,15 @@ Model Description
|
|
23 |
• Architecture: Fine-tuned on top of Google’s Gemma 2 model using LoRA.
|
24 |
• Input Format: Special tokens <start_of_turn> / <end_of_turn> define user vs. model turns.
|
25 |
• Output: Era identification (optional), phonetic renderings, and modern Chinese translations.
|
|
|
26 |
Training Data
|
27 |
• Translation: Erya dataset from RUCAIBox/Erya-dataset.
|
28 |
• Phonology: Ancient-Chinese-Phonology (ACP) for multi-era reconstructions.
|
29 |
• Fine-Tuning: LoRA-based parameter-efficient approach on Gemma 2 Instruct.
|
|
|
|
|
30 |
Usage
|
|
|
31 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
32 |
|
33 |
tokenizer = AutoTokenizer.from_pretrained("username/ancient-chinese-phonology")
|
|
|
23 |
• Architecture: Fine-tuned on top of Google’s Gemma 2 model using LoRA.
|
24 |
• Input Format: Special tokens <start_of_turn> / <end_of_turn> define user vs. model turns.
|
25 |
• Output: Era identification (optional), phonetic renderings, and modern Chinese translations.
|
26 |
+
|
27 |
Training Data
|
28 |
• Translation: Erya dataset from RUCAIBox/Erya-dataset.
|
29 |
• Phonology: Ancient-Chinese-Phonology (ACP) for multi-era reconstructions.
|
30 |
• Fine-Tuning: LoRA-based parameter-efficient approach on Gemma 2 Instruct.
|
31 |
+
|
32 |
+
|
33 |
Usage
|
34 |
+
|
35 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
36 |
|
37 |
tokenizer = AutoTokenizer.from_pretrained("username/ancient-chinese-phonology")
|