File size: 45,115 Bytes
54c22e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 |
import audioread
import librosa
import numpy as np
import soundfile as sf
import math
import platform
import traceback
from . import pyrb
from scipy.signal import correlate, hilbert
import io
OPERATING_SYSTEM = platform.system()
SYSTEM_ARCH = platform.platform()
SYSTEM_PROC = platform.processor()
ARM = 'arm'
AUTO_PHASE = "Automatic"
POSITIVE_PHASE = "Positive Phase"
NEGATIVE_PHASE = "Negative Phase"
NONE_P = "None",
LOW_P = "Shifts: Low",
MED_P = "Shifts: Medium",
HIGH_P = "Shifts: High",
VHIGH_P = "Shifts: Very High"
MAXIMUM_P = "Shifts: Maximum"
progress_value = 0
last_update_time = 0
is_macos = False
if OPERATING_SYSTEM == 'Windows':
from pyrubberband import pyrb
else:
from . import pyrb
if OPERATING_SYSTEM == 'Darwin':
wav_resolution = "polyphase" if SYSTEM_PROC == ARM or ARM in SYSTEM_ARCH else "sinc_fastest"
wav_resolution_float_resampling = "kaiser_best" if SYSTEM_PROC == ARM or ARM in SYSTEM_ARCH else wav_resolution
is_macos = True
else:
wav_resolution = "sinc_fastest"
wav_resolution_float_resampling = wav_resolution
MAX_SPEC = 'Max Spec'
MIN_SPEC = 'Min Spec'
LIN_ENSE = 'Linear Ensemble'
MAX_WAV = MAX_SPEC
MIN_WAV = MIN_SPEC
AVERAGE = 'Average'
def crop_center(h1, h2):
h1_shape = h1.size()
h2_shape = h2.size()
if h1_shape[3] == h2_shape[3]:
return h1
elif h1_shape[3] < h2_shape[3]:
raise ValueError('h1_shape[3] must be greater than h2_shape[3]')
s_time = (h1_shape[3] - h2_shape[3]) // 2
e_time = s_time + h2_shape[3]
h1 = h1[:, :, :, s_time:e_time]
return h1
def preprocess(X_spec):
X_mag = np.abs(X_spec)
X_phase = np.angle(X_spec)
return X_mag, X_phase
def make_padding(width, cropsize, offset):
left = offset
roi_size = cropsize - offset * 2
if roi_size == 0:
roi_size = cropsize
right = roi_size - (width % roi_size) + left
return left, right, roi_size
def normalize(wave, is_normalize=False):
"""Normalize audio"""
maxv = np.abs(wave).max()
if maxv > 1.0:
if is_normalize:
print("Above clipping threshold.")
wave /= maxv
return wave
def auto_transpose(audio_array:np.ndarray):
"""
Ensure that the audio array is in the (channels, samples) format.
Parameters:
audio_array (ndarray): Input audio array.
Returns:
ndarray: Transposed audio array if necessary.
"""
# If the second dimension is 2 (indicating stereo channels), transpose the array
if audio_array.shape[1] == 2:
return audio_array.T
return audio_array
def write_array_to_mem(audio_data, subtype):
if isinstance(audio_data, np.ndarray):
audio_buffer = io.BytesIO()
sf.write(audio_buffer, audio_data, 44100, subtype=subtype, format='WAV')
audio_buffer.seek(0)
return audio_buffer
else:
return audio_data
def spectrogram_to_image(spec, mode='magnitude'):
if mode == 'magnitude':
if np.iscomplexobj(spec):
y = np.abs(spec)
else:
y = spec
y = np.log10(y ** 2 + 1e-8)
elif mode == 'phase':
if np.iscomplexobj(spec):
y = np.angle(spec)
else:
y = spec
y -= y.min()
y *= 255 / y.max()
img = np.uint8(y)
if y.ndim == 3:
img = img.transpose(1, 2, 0)
img = np.concatenate([
np.max(img, axis=2, keepdims=True), img
], axis=2)
return img
def reduce_vocal_aggressively(X, y, softmask):
v = X - y
y_mag_tmp = np.abs(y)
v_mag_tmp = np.abs(v)
v_mask = v_mag_tmp > y_mag_tmp
y_mag = np.clip(y_mag_tmp - v_mag_tmp * v_mask * softmask, 0, np.inf)
return y_mag * np.exp(1.j * np.angle(y))
def merge_artifacts(y_mask, thres=0.01, min_range=64, fade_size=32):
mask = y_mask
try:
if min_range < fade_size * 2:
raise ValueError('min_range must be >= fade_size * 2')
idx = np.where(y_mask.min(axis=(0, 1)) > thres)[0]
start_idx = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
end_idx = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
artifact_idx = np.where(end_idx - start_idx > min_range)[0]
weight = np.zeros_like(y_mask)
if len(artifact_idx) > 0:
start_idx = start_idx[artifact_idx]
end_idx = end_idx[artifact_idx]
old_e = None
for s, e in zip(start_idx, end_idx):
if old_e is not None and s - old_e < fade_size:
s = old_e - fade_size * 2
if s != 0:
weight[:, :, s:s + fade_size] = np.linspace(0, 1, fade_size)
else:
s -= fade_size
if e != y_mask.shape[2]:
weight[:, :, e - fade_size:e] = np.linspace(1, 0, fade_size)
else:
e += fade_size
weight[:, :, s + fade_size:e - fade_size] = 1
old_e = e
v_mask = 1 - y_mask
y_mask += weight * v_mask
mask = y_mask
except Exception as e:
error_name = f'{type(e).__name__}'
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
message = f'{error_name}: "{e}"\n{traceback_text}"'
print('Post Process Failed: ', message)
return mask
def align_wave_head_and_tail(a, b):
l = min([a[0].size, b[0].size])
return a[:l,:l], b[:l,:l]
def convert_channels(spec, mp, band):
cc = mp.param['band'][band].get('convert_channels')
if 'mid_side_c' == cc:
spec_left = np.add(spec[0], spec[1] * .25)
spec_right = np.subtract(spec[1], spec[0] * .25)
elif 'mid_side' == cc:
spec_left = np.add(spec[0], spec[1]) / 2
spec_right = np.subtract(spec[0], spec[1])
elif 'stereo_n' == cc:
spec_left = np.add(spec[0], spec[1] * .25) / 0.9375
spec_right = np.add(spec[1], spec[0] * .25) / 0.9375
else:
return spec
return np.asfortranarray([spec_left, spec_right])
def combine_spectrograms(specs, mp, is_v51_model=False):
l = min([specs[i].shape[2] for i in specs])
spec_c = np.zeros(shape=(2, mp.param['bins'] + 1, l), dtype=np.complex64)
offset = 0
bands_n = len(mp.param['band'])
for d in range(1, bands_n + 1):
h = mp.param['band'][d]['crop_stop'] - mp.param['band'][d]['crop_start']
spec_c[:, offset:offset+h, :l] = specs[d][:, mp.param['band'][d]['crop_start']:mp.param['band'][d]['crop_stop'], :l]
offset += h
if offset > mp.param['bins']:
raise ValueError('Too much bins')
# lowpass fiter
if mp.param['pre_filter_start'] > 0:
if is_v51_model:
spec_c *= get_lp_filter_mask(spec_c.shape[1], mp.param['pre_filter_start'], mp.param['pre_filter_stop'])
else:
if bands_n == 1:
spec_c = fft_lp_filter(spec_c, mp.param['pre_filter_start'], mp.param['pre_filter_stop'])
else:
gp = 1
for b in range(mp.param['pre_filter_start'] + 1, mp.param['pre_filter_stop']):
g = math.pow(10, -(b - mp.param['pre_filter_start']) * (3.5 - gp) / 20.0)
gp = g
spec_c[:, b, :] *= g
return np.asfortranarray(spec_c)
def wave_to_spectrogram(wave, hop_length, n_fft, mp, band, is_v51_model=False):
if wave.ndim == 1:
wave = np.asfortranarray([wave,wave])
if not is_v51_model:
if mp.param['reverse']:
wave_left = np.flip(np.asfortranarray(wave[0]))
wave_right = np.flip(np.asfortranarray(wave[1]))
elif mp.param['mid_side']:
wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2)
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1]))
elif mp.param['mid_side_b2']:
wave_left = np.asfortranarray(np.add(wave[1], wave[0] * .5))
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * .5))
else:
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
else:
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length)
spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
spec = np.asfortranarray([spec_left, spec_right])
if is_v51_model:
spec = convert_channels(spec, mp, band)
return spec
def spectrogram_to_wave(spec, hop_length=1024, mp={}, band=0, is_v51_model=True):
spec_left = np.asfortranarray(spec[0])
spec_right = np.asfortranarray(spec[1])
wave_left = librosa.istft(spec_left, hop_length=hop_length)
wave_right = librosa.istft(spec_right, hop_length=hop_length)
if is_v51_model:
cc = mp.param['band'][band].get('convert_channels')
if 'mid_side_c' == cc:
return np.asfortranarray([np.subtract(wave_left / 1.0625, wave_right / 4.25), np.add(wave_right / 1.0625, wave_left / 4.25)])
elif 'mid_side' == cc:
return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
elif 'stereo_n' == cc:
return np.asfortranarray([np.subtract(wave_left, wave_right * .25), np.subtract(wave_right, wave_left * .25)])
else:
if mp.param['reverse']:
return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
elif mp.param['mid_side']:
return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
elif mp.param['mid_side_b2']:
return np.asfortranarray([np.add(wave_right / 1.25, .4 * wave_left), np.subtract(wave_left / 1.25, .4 * wave_right)])
return np.asfortranarray([wave_left, wave_right])
def cmb_spectrogram_to_wave(spec_m, mp, extra_bins_h=None, extra_bins=None, is_v51_model=False):
bands_n = len(mp.param['band'])
offset = 0
for d in range(1, bands_n + 1):
bp = mp.param['band'][d]
spec_s = np.ndarray(shape=(2, bp['n_fft'] // 2 + 1, spec_m.shape[2]), dtype=complex)
h = bp['crop_stop'] - bp['crop_start']
spec_s[:, bp['crop_start']:bp['crop_stop'], :] = spec_m[:, offset:offset+h, :]
offset += h
if d == bands_n: # higher
if extra_bins_h: # if --high_end_process bypass
max_bin = bp['n_fft'] // 2
spec_s[:, max_bin-extra_bins_h:max_bin, :] = extra_bins[:, :extra_bins_h, :]
if bp['hpf_start'] > 0:
if is_v51_model:
spec_s *= get_hp_filter_mask(spec_s.shape[1], bp['hpf_start'], bp['hpf_stop'] - 1)
else:
spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1)
if bands_n == 1:
wave = spectrogram_to_wave(spec_s, bp['hl'], mp, d, is_v51_model)
else:
wave = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp, d, is_v51_model))
else:
sr = mp.param['band'][d+1]['sr']
if d == 1: # lower
if is_v51_model:
spec_s *= get_lp_filter_mask(spec_s.shape[1], bp['lpf_start'], bp['lpf_stop'])
else:
spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop'])
wave = librosa.resample(spectrogram_to_wave(spec_s, bp['hl'], mp, d, is_v51_model), bp['sr'], sr, res_type=wav_resolution)
else: # mid
if is_v51_model:
spec_s *= get_hp_filter_mask(spec_s.shape[1], bp['hpf_start'], bp['hpf_stop'] - 1)
spec_s *= get_lp_filter_mask(spec_s.shape[1], bp['lpf_start'], bp['lpf_stop'])
else:
spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1)
spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop'])
wave2 = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp, d, is_v51_model))
wave = librosa.resample(wave2, bp['sr'], sr, res_type=wav_resolution)
return wave
def get_lp_filter_mask(n_bins, bin_start, bin_stop):
mask = np.concatenate([
np.ones((bin_start - 1, 1)),
np.linspace(1, 0, bin_stop - bin_start + 1)[:, None],
np.zeros((n_bins - bin_stop, 1))
], axis=0)
return mask
def get_hp_filter_mask(n_bins, bin_start, bin_stop):
mask = np.concatenate([
np.zeros((bin_stop + 1, 1)),
np.linspace(0, 1, 1 + bin_start - bin_stop)[:, None],
np.ones((n_bins - bin_start - 2, 1))
], axis=0)
return mask
def fft_lp_filter(spec, bin_start, bin_stop):
g = 1.0
for b in range(bin_start, bin_stop):
g -= 1 / (bin_stop - bin_start)
spec[:, b, :] = g * spec[:, b, :]
spec[:, bin_stop:, :] *= 0
return spec
def fft_hp_filter(spec, bin_start, bin_stop):
g = 1.0
for b in range(bin_start, bin_stop, -1):
g -= 1 / (bin_start - bin_stop)
spec[:, b, :] = g * spec[:, b, :]
spec[:, 0:bin_stop+1, :] *= 0
return spec
def spectrogram_to_wave_old(spec, hop_length=1024):
if spec.ndim == 2:
wave = librosa.istft(spec, hop_length=hop_length)
elif spec.ndim == 3:
spec_left = np.asfortranarray(spec[0])
spec_right = np.asfortranarray(spec[1])
wave_left = librosa.istft(spec_left, hop_length=hop_length)
wave_right = librosa.istft(spec_right, hop_length=hop_length)
wave = np.asfortranarray([wave_left, wave_right])
return wave
def wave_to_spectrogram_old(wave, hop_length, n_fft):
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length)
spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
spec = np.asfortranarray([spec_left, spec_right])
return spec
def mirroring(a, spec_m, input_high_end, mp):
if 'mirroring' == a:
mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1)
mirror = mirror * np.exp(1.j * np.angle(input_high_end))
return np.where(np.abs(input_high_end) <= np.abs(mirror), input_high_end, mirror)
if 'mirroring2' == a:
mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1)
mi = np.multiply(mirror, input_high_end * 1.7)
return np.where(np.abs(input_high_end) <= np.abs(mi), input_high_end, mi)
def adjust_aggr(mask, is_non_accom_stem, aggressiveness):
aggr = aggressiveness['value'] * 2
if aggr != 0:
if is_non_accom_stem:
aggr = 1 - aggr
aggr = [aggr, aggr]
if aggressiveness['aggr_correction'] is not None:
aggr[0] += aggressiveness['aggr_correction']['left']
aggr[1] += aggressiveness['aggr_correction']['right']
for ch in range(2):
mask[ch, :aggressiveness['split_bin']] = np.power(mask[ch, :aggressiveness['split_bin']], 1 + aggr[ch] / 3)
mask[ch, aggressiveness['split_bin']:] = np.power(mask[ch, aggressiveness['split_bin']:], 1 + aggr[ch])
return mask
def stft(wave, nfft, hl):
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
spec_left = librosa.stft(wave_left, nfft, hop_length=hl)
spec_right = librosa.stft(wave_right, nfft, hop_length=hl)
spec = np.asfortranarray([spec_left, spec_right])
return spec
def istft(spec, hl):
spec_left = np.asfortranarray(spec[0])
spec_right = np.asfortranarray(spec[1])
wave_left = librosa.istft(spec_left, hop_length=hl)
wave_right = librosa.istft(spec_right, hop_length=hl)
wave = np.asfortranarray([wave_left, wave_right])
return wave
def spec_effects(wave, algorithm='Default', value=None):
spec = [stft(wave[0],2048,1024), stft(wave[1],2048,1024)]
if algorithm == 'Min_Mag':
v_spec_m = np.where(np.abs(spec[1]) <= np.abs(spec[0]), spec[1], spec[0])
wave = istft(v_spec_m,1024)
elif algorithm == 'Max_Mag':
v_spec_m = np.where(np.abs(spec[1]) >= np.abs(spec[0]), spec[1], spec[0])
wave = istft(v_spec_m,1024)
elif algorithm == 'Default':
wave = (wave[1] * value) + (wave[0] * (1-value))
elif algorithm == 'Invert_p':
X_mag = np.abs(spec[0])
y_mag = np.abs(spec[1])
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
v_spec = spec[1] - max_mag * np.exp(1.j * np.angle(spec[0]))
wave = istft(v_spec,1024)
return wave
def spectrogram_to_wave_no_mp(spec, n_fft=2048, hop_length=1024):
wave = librosa.istft(spec, n_fft=n_fft, hop_length=hop_length)
if wave.ndim == 1:
wave = np.asfortranarray([wave,wave])
return wave
def wave_to_spectrogram_no_mp(wave):
spec = librosa.stft(wave, n_fft=2048, hop_length=1024)
if spec.ndim == 1:
spec = np.asfortranarray([spec,spec])
return spec
def invert_audio(specs, invert_p=True):
ln = min([specs[0].shape[2], specs[1].shape[2]])
specs[0] = specs[0][:,:,:ln]
specs[1] = specs[1][:,:,:ln]
if invert_p:
X_mag = np.abs(specs[0])
y_mag = np.abs(specs[1])
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
v_spec = specs[1] - max_mag * np.exp(1.j * np.angle(specs[0]))
else:
specs[1] = reduce_vocal_aggressively(specs[0], specs[1], 0.2)
v_spec = specs[0] - specs[1]
return v_spec
def invert_stem(mixture, stem):
mixture = wave_to_spectrogram_no_mp(mixture)
stem = wave_to_spectrogram_no_mp(stem)
output = spectrogram_to_wave_no_mp(invert_audio([mixture, stem]))
return -output.T
def ensembling(a, inputs, is_wavs=False):
for i in range(1, len(inputs)):
if i == 1:
input = inputs[0]
if is_wavs:
ln = min([input.shape[1], inputs[i].shape[1]])
input = input[:,:ln]
inputs[i] = inputs[i][:,:ln]
else:
ln = min([input.shape[2], inputs[i].shape[2]])
input = input[:,:,:ln]
inputs[i] = inputs[i][:,:,:ln]
if MIN_SPEC == a:
input = np.where(np.abs(inputs[i]) <= np.abs(input), inputs[i], input)
if MAX_SPEC == a:
input = np.where(np.abs(inputs[i]) >= np.abs(input), inputs[i], input)
#linear_ensemble
#input = ensemble_wav(inputs, split_size=1)
return input
def ensemble_for_align(waves):
specs = []
for wav in waves:
spec = wave_to_spectrogram_no_mp(wav.T)
specs.append(spec)
wav_aligned = spectrogram_to_wave_no_mp(ensembling(MIN_SPEC, specs)).T
wav_aligned = match_array_shapes(wav_aligned, waves[1], is_swap=True)
return wav_aligned
def ensemble_inputs(audio_input, algorithm, is_normalization, wav_type_set, save_path, is_wave=False, is_array=False):
wavs_ = []
if algorithm == AVERAGE:
output = average_audio(audio_input)
samplerate = 44100
else:
specs = []
for i in range(len(audio_input)):
wave, samplerate = librosa.load(audio_input[i], mono=False, sr=44100)
wavs_.append(wave)
spec = wave if is_wave else wave_to_spectrogram_no_mp(wave)
specs.append(spec)
wave_shapes = [w.shape[1] for w in wavs_]
target_shape = wavs_[wave_shapes.index(max(wave_shapes))]
if is_wave:
output = ensembling(algorithm, specs, is_wavs=True)
else:
output = spectrogram_to_wave_no_mp(ensembling(algorithm, specs))
output = to_shape(output, target_shape.shape)
sf.write(save_path, normalize(output.T, is_normalization), samplerate, subtype=wav_type_set)
def to_shape(x, target_shape):
padding_list = []
for x_dim, target_dim in zip(x.shape, target_shape):
pad_value = (target_dim - x_dim)
pad_tuple = ((0, pad_value))
padding_list.append(pad_tuple)
return np.pad(x, tuple(padding_list), mode='constant')
def to_shape_minimize(x: np.ndarray, target_shape):
padding_list = []
for x_dim, target_dim in zip(x.shape, target_shape):
pad_value = (target_dim - x_dim)
pad_tuple = ((0, pad_value))
padding_list.append(pad_tuple)
return np.pad(x, tuple(padding_list), mode='constant')
def detect_leading_silence(audio, sr, silence_threshold=0.007, frame_length=1024):
"""
Detect silence at the beginning of an audio signal.
:param audio: np.array, audio signal
:param sr: int, sample rate
:param silence_threshold: float, magnitude threshold below which is considered silence
:param frame_length: int, the number of samples to consider for each check
:return: float, duration of the leading silence in milliseconds
"""
if len(audio.shape) == 2:
# If stereo, pick the channel with more energy to determine the silence
channel = np.argmax(np.sum(np.abs(audio), axis=1))
audio = audio[channel]
for i in range(0, len(audio), frame_length):
if np.max(np.abs(audio[i:i+frame_length])) > silence_threshold:
return (i / sr) * 1000
return (len(audio) / sr) * 1000
def adjust_leading_silence(target_audio, reference_audio, silence_threshold=0.01, frame_length=1024):
"""
Adjust the leading silence of the target_audio to match the leading silence of the reference_audio.
:param target_audio: np.array, audio signal that will have its silence adjusted
:param reference_audio: np.array, audio signal used as a reference
:param sr: int, sample rate
:param silence_threshold: float, magnitude threshold below which is considered silence
:param frame_length: int, the number of samples to consider for each check
:return: np.array, target_audio adjusted to have the same leading silence as reference_audio
"""
def find_silence_end(audio):
if len(audio.shape) == 2:
# If stereo, pick the channel with more energy to determine the silence
channel = np.argmax(np.sum(np.abs(audio), axis=1))
audio_mono = audio[channel]
else:
audio_mono = audio
for i in range(0, len(audio_mono), frame_length):
if np.max(np.abs(audio_mono[i:i+frame_length])) > silence_threshold:
return i
return len(audio_mono)
ref_silence_end = find_silence_end(reference_audio)
target_silence_end = find_silence_end(target_audio)
silence_difference = ref_silence_end - target_silence_end
try:
ref_silence_end_p = (ref_silence_end / 44100) * 1000
target_silence_end_p = (target_silence_end / 44100) * 1000
silence_difference_p = ref_silence_end_p - target_silence_end_p
print("silence_difference: ", silence_difference_p)
except Exception as e:
pass
if silence_difference > 0: # Add silence to target_audio
if len(target_audio.shape) == 2: # stereo
silence_to_add = np.zeros((target_audio.shape[0], silence_difference))
else: # mono
silence_to_add = np.zeros(silence_difference)
return np.hstack((silence_to_add, target_audio))
elif silence_difference < 0: # Remove silence from target_audio
if len(target_audio.shape) == 2: # stereo
return target_audio[:, -silence_difference:]
else: # mono
return target_audio[-silence_difference:]
else: # No adjustment needed
return target_audio
def match_array_shapes(array_1:np.ndarray, array_2:np.ndarray, is_swap=False):
if is_swap:
array_1, array_2 = array_1.T, array_2.T
#print("before", array_1.shape, array_2.shape)
if array_1.shape[1] > array_2.shape[1]:
array_1 = array_1[:,:array_2.shape[1]]
elif array_1.shape[1] < array_2.shape[1]:
padding = array_2.shape[1] - array_1.shape[1]
array_1 = np.pad(array_1, ((0,0), (0,padding)), 'constant', constant_values=0)
#print("after", array_1.shape, array_2.shape)
if is_swap:
array_1, array_2 = array_1.T, array_2.T
return array_1
def match_mono_array_shapes(array_1: np.ndarray, array_2: np.ndarray):
if len(array_1) > len(array_2):
array_1 = array_1[:len(array_2)]
elif len(array_1) < len(array_2):
padding = len(array_2) - len(array_1)
array_1 = np.pad(array_1, (0, padding), 'constant', constant_values=0)
return array_1
def change_pitch_semitones(y, sr, semitone_shift):
factor = 2 ** (semitone_shift / 12) # Convert semitone shift to factor for resampling
y_pitch_tuned = []
for y_channel in y:
y_pitch_tuned.append(librosa.resample(y_channel, sr, sr*factor, res_type=wav_resolution_float_resampling))
y_pitch_tuned = np.array(y_pitch_tuned)
new_sr = sr * factor
return y_pitch_tuned, new_sr
def augment_audio(export_path, audio_file, rate, is_normalization, wav_type_set, save_format=None, is_pitch=False, is_time_correction=True):
wav, sr = librosa.load(audio_file, sr=44100, mono=False)
if wav.ndim == 1:
wav = np.asfortranarray([wav,wav])
if not is_time_correction:
wav_mix = change_pitch_semitones(wav, 44100, semitone_shift=-rate)[0]
else:
if is_pitch:
wav_1 = pyrb.pitch_shift(wav[0], sr, rate, rbargs=None)
wav_2 = pyrb.pitch_shift(wav[1], sr, rate, rbargs=None)
else:
wav_1 = pyrb.time_stretch(wav[0], sr, rate, rbargs=None)
wav_2 = pyrb.time_stretch(wav[1], sr, rate, rbargs=None)
if wav_1.shape > wav_2.shape:
wav_2 = to_shape(wav_2, wav_1.shape)
if wav_1.shape < wav_2.shape:
wav_1 = to_shape(wav_1, wav_2.shape)
wav_mix = np.asfortranarray([wav_1, wav_2])
sf.write(export_path, normalize(wav_mix.T, is_normalization), sr, subtype=wav_type_set)
save_format(export_path)
def average_audio(audio):
waves = []
wave_shapes = []
final_waves = []
for i in range(len(audio)):
wave = librosa.load(audio[i], sr=44100, mono=False)
waves.append(wave[0])
wave_shapes.append(wave[0].shape[1])
wave_shapes_index = wave_shapes.index(max(wave_shapes))
target_shape = waves[wave_shapes_index]
waves.pop(wave_shapes_index)
final_waves.append(target_shape)
for n_array in waves:
wav_target = to_shape(n_array, target_shape.shape)
final_waves.append(wav_target)
waves = sum(final_waves)
waves = waves/len(audio)
return waves
def average_dual_sources(wav_1, wav_2, value):
if wav_1.shape > wav_2.shape:
wav_2 = to_shape(wav_2, wav_1.shape)
if wav_1.shape < wav_2.shape:
wav_1 = to_shape(wav_1, wav_2.shape)
wave = (wav_1 * value) + (wav_2 * (1-value))
return wave
def reshape_sources(wav_1: np.ndarray, wav_2: np.ndarray):
if wav_1.shape > wav_2.shape:
wav_2 = to_shape(wav_2, wav_1.shape)
if wav_1.shape < wav_2.shape:
ln = min([wav_1.shape[1], wav_2.shape[1]])
wav_2 = wav_2[:,:ln]
ln = min([wav_1.shape[1], wav_2.shape[1]])
wav_1 = wav_1[:,:ln]
wav_2 = wav_2[:,:ln]
return wav_2
def reshape_sources_ref(wav_1_shape, wav_2: np.ndarray):
if wav_1_shape > wav_2.shape:
wav_2 = to_shape(wav_2, wav_1_shape)
return wav_2
def combine_arrarys(audio_sources, is_swap=False):
source = np.zeros_like(max(audio_sources, key=np.size))
for v in audio_sources:
v = match_array_shapes(v, source, is_swap=is_swap)
source += v
return source
def combine_audio(paths: list, audio_file_base=None, wav_type_set='FLOAT', save_format=None):
source = combine_arrarys([load_audio(i) for i in paths])
save_path = f"{audio_file_base}_combined.wav"
sf.write(save_path, source.T, 44100, subtype=wav_type_set)
save_format(save_path)
def reduce_mix_bv(inst_source, voc_source, reduction_rate=0.9):
# Reduce the volume
inst_source = inst_source * (1 - reduction_rate)
mix_reduced = combine_arrarys([inst_source, voc_source], is_swap=True)
return mix_reduced
def organize_inputs(inputs):
input_list = {
"target":None,
"reference":None,
"reverb":None,
"inst":None
}
for i in inputs:
if i.endswith("_(Vocals).wav"):
input_list["reference"] = i
elif "_RVC_" in i:
input_list["target"] = i
elif i.endswith("reverbed_stem.wav"):
input_list["reverb"] = i
elif i.endswith("_(Instrumental).wav"):
input_list["inst"] = i
return input_list
def check_if_phase_inverted(wav1, wav2, is_mono=False):
# Load the audio files
if not is_mono:
wav1 = np.mean(wav1, axis=0)
wav2 = np.mean(wav2, axis=0)
# Compute the correlation
correlation = np.corrcoef(wav1[:1000], wav2[:1000])
return correlation[0,1] < 0
def align_audio(file1,
file2,
file2_aligned,
file_subtracted,
wav_type_set,
is_save_aligned,
command_Text,
save_format,
align_window:list,
align_intro_val:list,
db_analysis:tuple,
set_progress_bar,
phase_option,
phase_shifts,
is_match_silence,
is_spec_match):
global progress_value
progress_value = 0
is_mono = False
def get_diff(a, b):
corr = np.correlate(a, b, "full")
diff = corr.argmax() - (b.shape[0] - 1)
return diff
def progress_bar(length):
global progress_value
progress_value += 1
if (0.90/length*progress_value) >= 0.9:
length = progress_value + 1
set_progress_bar(0.1, (0.9/length*progress_value))
# read tracks
if file1.endswith(".mp3") and is_macos:
length1 = rerun_mp3(file1)
wav1, sr1 = librosa.load(file1, duration=length1, sr=44100, mono=False)
else:
wav1, sr1 = librosa.load(file1, sr=44100, mono=False)
if file2.endswith(".mp3") and is_macos:
length2 = rerun_mp3(file2)
wav2, sr2 = librosa.load(file2, duration=length2, sr=44100, mono=False)
else:
wav2, sr2 = librosa.load(file2, sr=44100, mono=False)
if wav1.ndim == 1 and wav2.ndim == 1:
is_mono = True
elif wav1.ndim == 1:
wav1 = np.asfortranarray([wav1,wav1])
elif wav2.ndim == 1:
wav2 = np.asfortranarray([wav2,wav2])
# Check if phase is inverted
if phase_option == AUTO_PHASE:
if check_if_phase_inverted(wav1, wav2, is_mono=is_mono):
wav2 = -wav2
elif phase_option == POSITIVE_PHASE:
wav2 = +wav2
elif phase_option == NEGATIVE_PHASE:
wav2 = -wav2
if is_match_silence:
wav2 = adjust_leading_silence(wav2, wav1)
wav1_length = int(librosa.get_duration(y=wav1, sr=44100))
wav2_length = int(librosa.get_duration(y=wav2, sr=44100))
if not is_mono:
wav1 = wav1.transpose()
wav2 = wav2.transpose()
wav2_org = wav2.copy()
command_Text("Processing files... \n")
seconds_length = min(wav1_length, wav2_length)
wav2_aligned_sources = []
for sec_len in align_intro_val:
# pick a position at 1 second in and get diff
sec_seg = 1 if sec_len == 1 else int(seconds_length // sec_len)
index = sr1*sec_seg # 1 second in, assuming sr1 = sr2 = 44100
if is_mono:
samp1, samp2 = wav1[index : index + sr1], wav2[index : index + sr1]
diff = get_diff(samp1, samp2)
#print(f"Estimated difference: {diff}\n")
else:
index = sr1*sec_seg # 1 second in, assuming sr1 = sr2 = 44100
samp1, samp2 = wav1[index : index + sr1, 0], wav2[index : index + sr1, 0]
samp1_r, samp2_r = wav1[index : index + sr1, 1], wav2[index : index + sr1, 1]
diff, diff_r = get_diff(samp1, samp2), get_diff(samp1_r, samp2_r)
#print(f"Estimated difference Left Channel: {diff}\nEstimated difference Right Channel: {diff_r}\n")
# make aligned track 2
if diff > 0:
zeros_to_append = np.zeros(diff) if is_mono else np.zeros((diff, 2))
wav2_aligned = np.append(zeros_to_append, wav2_org, axis=0)
elif diff < 0:
wav2_aligned = wav2_org[-diff:]
else:
wav2_aligned = wav2_org
#command_Text(f"Audio files already aligned.\n")
if not any(np.array_equal(wav2_aligned, source) for source in wav2_aligned_sources):
wav2_aligned_sources.append(wav2_aligned)
#print("Unique Sources: ", len(wav2_aligned_sources))
unique_sources = len(wav2_aligned_sources)
sub_mapper_big_mapper = {}
for s in wav2_aligned_sources:
wav2_aligned = match_mono_array_shapes(s, wav1) if is_mono else match_array_shapes(s, wav1, is_swap=True)
if align_window:
wav_sub = time_correction(wav1, wav2_aligned, seconds_length, align_window=align_window, db_analysis=db_analysis, progress_bar=progress_bar, unique_sources=unique_sources, phase_shifts=phase_shifts)
wav_sub_size = np.abs(wav_sub).mean()
sub_mapper_big_mapper = {**sub_mapper_big_mapper, **{wav_sub_size:wav_sub}}
else:
wav2_aligned = wav2_aligned * np.power(10, db_analysis[0] / 20)
db_range = db_analysis[1]
for db_adjustment in db_range:
# Adjust the dB of track2
s_adjusted = wav2_aligned * (10 ** (db_adjustment / 20))
wav_sub = wav1 - s_adjusted
wav_sub_size = np.abs(wav_sub).mean()
sub_mapper_big_mapper = {**sub_mapper_big_mapper, **{wav_sub_size:wav_sub}}
#print(sub_mapper_big_mapper.keys(), min(sub_mapper_big_mapper.keys()))
sub_mapper_value_list = list(sub_mapper_big_mapper.values())
if is_spec_match and len(sub_mapper_value_list) >= 2:
#print("using spec ensemble with align")
wav_sub = ensemble_for_align(list(sub_mapper_big_mapper.values()))
else:
#print("using linear ensemble with align")
wav_sub = ensemble_wav(list(sub_mapper_big_mapper.values()))
#print(f"Mix Mean: {np.abs(wav1).mean()}\nInst Mean: {np.abs(wav2).mean()}")
#print('Final: ', np.abs(wav_sub).mean())
wav_sub = np.clip(wav_sub, -1, +1)
command_Text(f"Saving inverted track... ")
if is_save_aligned or is_spec_match:
wav1 = match_mono_array_shapes(wav1, wav_sub) if is_mono else match_array_shapes(wav1, wav_sub, is_swap=True)
wav2_aligned = wav1 - wav_sub
if is_spec_match:
if wav1.ndim == 1 and wav2.ndim == 1:
wav2_aligned = np.asfortranarray([wav2_aligned, wav2_aligned]).T
wav1 = np.asfortranarray([wav1, wav1]).T
wav2_aligned = ensemble_for_align([wav2_aligned, wav1])
wav_sub = wav1 - wav2_aligned
if is_save_aligned:
sf.write(file2_aligned, wav2_aligned, sr1, subtype=wav_type_set)
save_format(file2_aligned)
sf.write(file_subtracted, wav_sub, sr1, subtype=wav_type_set)
save_format(file_subtracted)
def phase_shift_hilbert(signal, degree):
analytic_signal = hilbert(signal)
return np.cos(np.radians(degree)) * analytic_signal.real - np.sin(np.radians(degree)) * analytic_signal.imag
def get_phase_shifted_tracks(track, phase_shift):
if phase_shift == 180:
return [track, -track]
step = phase_shift
end = 180 - (180 % step) if 180 % step == 0 else 181
phase_range = range(step, end, step)
flipped_list = [track, -track]
for i in phase_range:
flipped_list.extend([phase_shift_hilbert(track, i), phase_shift_hilbert(track, -i)])
return flipped_list
def time_correction(mix:np.ndarray, instrumental:np.ndarray, seconds_length, align_window, db_analysis, sr=44100, progress_bar=None, unique_sources=None, phase_shifts=NONE_P):
# Function to align two tracks using cross-correlation
def align_tracks(track1, track2):
# A dictionary to store each version of track2_shifted and its mean absolute value
shifted_tracks = {}
# Loop to adjust dB of track2
track2 = track2 * np.power(10, db_analysis[0] / 20)
db_range = db_analysis[1]
if phase_shifts == 190:
track2_flipped = [track2]
else:
track2_flipped = get_phase_shifted_tracks(track2, phase_shifts)
for db_adjustment in db_range:
for t in track2_flipped:
# Adjust the dB of track2
track2_adjusted = t * (10 ** (db_adjustment / 20))
corr = correlate(track1, track2_adjusted)
delay = np.argmax(np.abs(corr)) - (len(track1) - 1)
track2_shifted = np.roll(track2_adjusted, shift=delay)
# Compute the mean absolute value of track2_shifted
track2_shifted_sub = track1 - track2_shifted
mean_abs_value = np.abs(track2_shifted_sub).mean()
# Store track2_shifted and its mean absolute value in the dictionary
shifted_tracks[mean_abs_value] = track2_shifted
# Return the version of track2_shifted with the smallest mean absolute value
return shifted_tracks[min(shifted_tracks.keys())]
# Make sure the audio files have the same shape
assert mix.shape == instrumental.shape, f"Audio files must have the same shape - Mix: {mix.shape}, Inst: {instrumental.shape}"
seconds_length = seconds_length // 2
sub_mapper = {}
progress_update_interval = 120
total_iterations = 0
if len(align_window) > 2:
progress_update_interval = 320
for secs in align_window:
step = secs / 2
window_size = int(sr * secs)
step_size = int(sr * step)
if len(mix.shape) == 1:
total_mono = (len(range(0, len(mix) - window_size, step_size))//progress_update_interval)*unique_sources
total_iterations += total_mono
else:
total_stereo_ = len(range(0, len(mix[:, 0]) - window_size, step_size))*2
total_stereo = (total_stereo_//progress_update_interval) * unique_sources
total_iterations += total_stereo
#print(total_iterations)
for secs in align_window:
sub = np.zeros_like(mix)
divider = np.zeros_like(mix)
step = secs / 2
window_size = int(sr * secs)
step_size = int(sr * step)
window = np.hanning(window_size)
# For the mono case:
if len(mix.shape) == 1:
# The files are mono
counter = 0
for i in range(0, len(mix) - window_size, step_size):
counter += 1
if counter % progress_update_interval == 0:
progress_bar(total_iterations)
window_mix = mix[i:i+window_size] * window
window_instrumental = instrumental[i:i+window_size] * window
window_instrumental_aligned = align_tracks(window_mix, window_instrumental)
sub[i:i+window_size] += window_mix - window_instrumental_aligned
divider[i:i+window_size] += window
else:
# The files are stereo
counter = 0
for ch in range(mix.shape[1]):
for i in range(0, len(mix[:, ch]) - window_size, step_size):
counter += 1
if counter % progress_update_interval == 0:
progress_bar(total_iterations)
window_mix = mix[i:i+window_size, ch] * window
window_instrumental = instrumental[i:i+window_size, ch] * window
window_instrumental_aligned = align_tracks(window_mix, window_instrumental)
sub[i:i+window_size, ch] += window_mix - window_instrumental_aligned
divider[i:i+window_size, ch] += window
# Normalize the result by the overlap count
sub = np.where(divider > 1e-6, sub / divider, sub)
sub_size = np.abs(sub).mean()
sub_mapper = {**sub_mapper, **{sub_size: sub}}
#print("SUB_LEN", len(list(sub_mapper.values())))
sub = ensemble_wav(list(sub_mapper.values()), split_size=12)
return sub
def ensemble_wav(waveforms, split_size=240):
# Create a dictionary to hold the thirds of each waveform and their mean absolute values
waveform_thirds = {i: np.array_split(waveform, split_size) for i, waveform in enumerate(waveforms)}
# Initialize the final waveform
final_waveform = []
# For chunk
for third_idx in range(split_size):
# Compute the mean absolute value of each third from each waveform
means = [np.abs(waveform_thirds[i][third_idx]).mean() for i in range(len(waveforms))]
# Find the index of the waveform with the lowest mean absolute value for this third
min_index = np.argmin(means)
# Add the least noisy third to the final waveform
final_waveform.append(waveform_thirds[min_index][third_idx])
# Concatenate all the thirds to create the final waveform
final_waveform = np.concatenate(final_waveform)
return final_waveform
def ensemble_wav_min(waveforms):
for i in range(1, len(waveforms)):
if i == 1:
wave = waveforms[0]
ln = min(len(wave), len(waveforms[i]))
wave = wave[:ln]
waveforms[i] = waveforms[i][:ln]
wave = np.where(np.abs(waveforms[i]) <= np.abs(wave), waveforms[i], wave)
return wave
def align_audio_test(wav1, wav2, sr1=44100):
def get_diff(a, b):
corr = np.correlate(a, b, "full")
diff = corr.argmax() - (b.shape[0] - 1)
return diff
# read tracks
wav1 = wav1.transpose()
wav2 = wav2.transpose()
#print(f"Audio file shapes: {wav1.shape} / {wav2.shape}\n")
wav2_org = wav2.copy()
# pick a position at 1 second in and get diff
index = sr1#*seconds_length # 1 second in, assuming sr1 = sr2 = 44100
samp1 = wav1[index : index + sr1, 0] # currently use left channel
samp2 = wav2[index : index + sr1, 0]
diff = get_diff(samp1, samp2)
# make aligned track 2
if diff > 0:
wav2_aligned = np.append(np.zeros((diff, 1)), wav2_org, axis=0)
elif diff < 0:
wav2_aligned = wav2_org[-diff:]
else:
wav2_aligned = wav2_org
return wav2_aligned
def load_audio(audio_file):
wav, sr = librosa.load(audio_file, sr=44100, mono=False)
if wav.ndim == 1:
wav = np.asfortranarray([wav,wav])
return wav
def rerun_mp3(audio_file):
with audioread.audio_open(audio_file) as f:
track_length = int(f.duration)
return track_length
|