File size: 45,115 Bytes
54c22e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
import audioread
import librosa
import numpy as np
import soundfile as sf
import math
import platform
import traceback
from . import pyrb
from scipy.signal import correlate, hilbert
import io

OPERATING_SYSTEM = platform.system()
SYSTEM_ARCH = platform.platform()
SYSTEM_PROC = platform.processor()
ARM = 'arm'

AUTO_PHASE = "Automatic"
POSITIVE_PHASE = "Positive Phase"
NEGATIVE_PHASE = "Negative Phase"
NONE_P = "None",
LOW_P = "Shifts: Low",
MED_P = "Shifts: Medium",
HIGH_P = "Shifts: High",
VHIGH_P = "Shifts: Very High"
MAXIMUM_P = "Shifts: Maximum"

progress_value = 0
last_update_time = 0
is_macos = False

if OPERATING_SYSTEM == 'Windows':
    from pyrubberband import pyrb
else:
    from . import pyrb

if OPERATING_SYSTEM == 'Darwin':
    wav_resolution = "polyphase" if SYSTEM_PROC == ARM or ARM in SYSTEM_ARCH else "sinc_fastest" 
    wav_resolution_float_resampling = "kaiser_best" if SYSTEM_PROC == ARM or ARM in SYSTEM_ARCH else wav_resolution 
    is_macos = True
else:
    wav_resolution = "sinc_fastest"
    wav_resolution_float_resampling = wav_resolution 

MAX_SPEC = 'Max Spec'
MIN_SPEC = 'Min Spec'
LIN_ENSE = 'Linear Ensemble'

MAX_WAV = MAX_SPEC
MIN_WAV = MIN_SPEC

AVERAGE = 'Average'

def crop_center(h1, h2):
    h1_shape = h1.size()
    h2_shape = h2.size()

    if h1_shape[3] == h2_shape[3]:
        return h1
    elif h1_shape[3] < h2_shape[3]:
        raise ValueError('h1_shape[3] must be greater than h2_shape[3]')

    s_time = (h1_shape[3] - h2_shape[3]) // 2
    e_time = s_time + h2_shape[3]
    h1 = h1[:, :, :, s_time:e_time]

    return h1

def preprocess(X_spec):
    X_mag = np.abs(X_spec)
    X_phase = np.angle(X_spec)

    return X_mag, X_phase

def make_padding(width, cropsize, offset):
    left = offset
    roi_size = cropsize - offset * 2
    if roi_size == 0:
        roi_size = cropsize
    right = roi_size - (width % roi_size) + left

    return left, right, roi_size

def normalize(wave, is_normalize=False):
    """Normalize audio"""

    maxv = np.abs(wave).max()
    if maxv > 1.0:
        if is_normalize:
            print("Above clipping threshold.")
            wave /= maxv
    
    return wave
    
def auto_transpose(audio_array:np.ndarray):
    """

    Ensure that the audio array is in the (channels, samples) format.



    Parameters:

        audio_array (ndarray): Input audio array.



    Returns:

        ndarray: Transposed audio array if necessary.

    """
    
    # If the second dimension is 2 (indicating stereo channels), transpose the array
    if audio_array.shape[1] == 2:
        return audio_array.T
    return audio_array

def write_array_to_mem(audio_data, subtype):
    if isinstance(audio_data, np.ndarray):
        audio_buffer = io.BytesIO()
        sf.write(audio_buffer, audio_data, 44100, subtype=subtype, format='WAV')
        audio_buffer.seek(0)
        return audio_buffer
    else:
        return audio_data

def spectrogram_to_image(spec, mode='magnitude'):
    if mode == 'magnitude':
        if np.iscomplexobj(spec):
            y = np.abs(spec)
        else:
            y = spec
        y = np.log10(y ** 2 + 1e-8)
    elif mode == 'phase':
        if np.iscomplexobj(spec):
            y = np.angle(spec)
        else:
            y = spec

    y -= y.min()
    y *= 255 / y.max()
    img = np.uint8(y)

    if y.ndim == 3:
        img = img.transpose(1, 2, 0)
        img = np.concatenate([
            np.max(img, axis=2, keepdims=True), img
        ], axis=2)

    return img

def reduce_vocal_aggressively(X, y, softmask):
    v = X - y
    y_mag_tmp = np.abs(y)
    v_mag_tmp = np.abs(v)

    v_mask = v_mag_tmp > y_mag_tmp
    y_mag = np.clip(y_mag_tmp - v_mag_tmp * v_mask * softmask, 0, np.inf)

    return y_mag * np.exp(1.j * np.angle(y))

def merge_artifacts(y_mask, thres=0.01, min_range=64, fade_size=32):
    mask = y_mask
    
    try:
        if min_range < fade_size * 2:
            raise ValueError('min_range must be >= fade_size * 2')

        idx = np.where(y_mask.min(axis=(0, 1)) > thres)[0]
        start_idx = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
        end_idx = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
        artifact_idx = np.where(end_idx - start_idx > min_range)[0]
        weight = np.zeros_like(y_mask)
        if len(artifact_idx) > 0:
            start_idx = start_idx[artifact_idx]
            end_idx = end_idx[artifact_idx]
            old_e = None
            for s, e in zip(start_idx, end_idx):
                if old_e is not None and s - old_e < fade_size:
                    s = old_e - fade_size * 2

                if s != 0:
                    weight[:, :, s:s + fade_size] = np.linspace(0, 1, fade_size)
                else:
                    s -= fade_size

                if e != y_mask.shape[2]:
                    weight[:, :, e - fade_size:e] = np.linspace(1, 0, fade_size)
                else:
                    e += fade_size

                weight[:, :, s + fade_size:e - fade_size] = 1
                old_e = e

        v_mask = 1 - y_mask
        y_mask += weight * v_mask
        
        mask = y_mask
    except Exception as e:
        error_name = f'{type(e).__name__}'
        traceback_text = ''.join(traceback.format_tb(e.__traceback__))
        message = f'{error_name}: "{e}"\n{traceback_text}"'
        print('Post Process Failed: ', message)
        
    return mask

def align_wave_head_and_tail(a, b):
    l = min([a[0].size, b[0].size])  
    
    return a[:l,:l], b[:l,:l]
    
def convert_channels(spec, mp, band):
    cc = mp.param['band'][band].get('convert_channels')

    if 'mid_side_c' == cc:
        spec_left = np.add(spec[0], spec[1] * .25)
        spec_right = np.subtract(spec[1], spec[0] * .25)
    elif 'mid_side' == cc:
        spec_left = np.add(spec[0], spec[1]) / 2
        spec_right = np.subtract(spec[0], spec[1])
    elif 'stereo_n' == cc:
        spec_left = np.add(spec[0], spec[1] * .25) / 0.9375
        spec_right = np.add(spec[1], spec[0] * .25) / 0.9375
    else:
        return spec
        
    return np.asfortranarray([spec_left, spec_right])
    
def combine_spectrograms(specs, mp, is_v51_model=False):
    l = min([specs[i].shape[2] for i in specs])    
    spec_c = np.zeros(shape=(2, mp.param['bins'] + 1, l), dtype=np.complex64)
    offset = 0
    bands_n = len(mp.param['band'])
    
    for d in range(1, bands_n + 1):
        h = mp.param['band'][d]['crop_stop'] - mp.param['band'][d]['crop_start']
        spec_c[:, offset:offset+h, :l] = specs[d][:, mp.param['band'][d]['crop_start']:mp.param['band'][d]['crop_stop'], :l]
        offset += h
        
    if offset > mp.param['bins']:
        raise ValueError('Too much bins')
        
    # lowpass fiter
    
    if mp.param['pre_filter_start'] > 0:
        if is_v51_model:
            spec_c *= get_lp_filter_mask(spec_c.shape[1], mp.param['pre_filter_start'], mp.param['pre_filter_stop'])
        else:
            if bands_n == 1:
                spec_c = fft_lp_filter(spec_c, mp.param['pre_filter_start'], mp.param['pre_filter_stop'])
            else:
                gp = 1        
                for b in range(mp.param['pre_filter_start'] + 1, mp.param['pre_filter_stop']):
                    g = math.pow(10, -(b - mp.param['pre_filter_start']) * (3.5 - gp) / 20.0)
                    gp = g
                    spec_c[:, b, :] *= g
                
    return np.asfortranarray(spec_c)
    
def wave_to_spectrogram(wave, hop_length, n_fft, mp, band, is_v51_model=False):

    if wave.ndim == 1:
        wave = np.asfortranarray([wave,wave])

    if not is_v51_model:
        if mp.param['reverse']:
            wave_left = np.flip(np.asfortranarray(wave[0]))
            wave_right = np.flip(np.asfortranarray(wave[1]))
        elif mp.param['mid_side']:
            wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2)
            wave_right = np.asfortranarray(np.subtract(wave[0], wave[1]))
        elif mp.param['mid_side_b2']:
            wave_left = np.asfortranarray(np.add(wave[1], wave[0] * .5))
            wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * .5))
        else:
            wave_left = np.asfortranarray(wave[0])
            wave_right = np.asfortranarray(wave[1])
    else:
        wave_left = np.asfortranarray(wave[0])
        wave_right = np.asfortranarray(wave[1])

    spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length)
    spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
    
    spec = np.asfortranarray([spec_left, spec_right])

    if is_v51_model:
        spec = convert_channels(spec, mp, band)

    return spec

def spectrogram_to_wave(spec, hop_length=1024, mp={}, band=0, is_v51_model=True):
    spec_left = np.asfortranarray(spec[0])
    spec_right = np.asfortranarray(spec[1])
    
    wave_left = librosa.istft(spec_left, hop_length=hop_length)
    wave_right = librosa.istft(spec_right, hop_length=hop_length)
    
    if is_v51_model:
        cc = mp.param['band'][band].get('convert_channels')
        if 'mid_side_c' == cc:
            return np.asfortranarray([np.subtract(wave_left / 1.0625, wave_right / 4.25), np.add(wave_right / 1.0625, wave_left / 4.25)])    
        elif 'mid_side' == cc:
            return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
        elif 'stereo_n' == cc:
            return np.asfortranarray([np.subtract(wave_left, wave_right * .25), np.subtract(wave_right, wave_left * .25)])
    else:
        if mp.param['reverse']:
            return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
        elif mp.param['mid_side']:
            return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
        elif mp.param['mid_side_b2']:
            return np.asfortranarray([np.add(wave_right / 1.25, .4 * wave_left), np.subtract(wave_left / 1.25, .4 * wave_right)])
    
    return np.asfortranarray([wave_left, wave_right])
    
def cmb_spectrogram_to_wave(spec_m, mp, extra_bins_h=None, extra_bins=None, is_v51_model=False):
    bands_n = len(mp.param['band'])    
    offset = 0

    for d in range(1, bands_n + 1):
        bp = mp.param['band'][d]
        spec_s = np.ndarray(shape=(2, bp['n_fft'] // 2 + 1, spec_m.shape[2]), dtype=complex)
        h = bp['crop_stop'] - bp['crop_start']
        spec_s[:, bp['crop_start']:bp['crop_stop'], :] = spec_m[:, offset:offset+h, :]
                
        offset += h
        if d == bands_n: # higher
            if extra_bins_h: # if --high_end_process bypass
                max_bin = bp['n_fft'] // 2
                spec_s[:, max_bin-extra_bins_h:max_bin, :] = extra_bins[:, :extra_bins_h, :]
            if bp['hpf_start'] > 0:
                if is_v51_model:
                    spec_s *= get_hp_filter_mask(spec_s.shape[1], bp['hpf_start'], bp['hpf_stop'] - 1)
                else:
                    spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1)
            if bands_n == 1:
                wave = spectrogram_to_wave(spec_s, bp['hl'], mp, d, is_v51_model)
            else:
                wave = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp, d, is_v51_model))
        else:
            sr = mp.param['band'][d+1]['sr']
            if d == 1: # lower
                if is_v51_model:
                    spec_s *= get_lp_filter_mask(spec_s.shape[1], bp['lpf_start'], bp['lpf_stop'])
                else:
                    spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop'])
                wave = librosa.resample(spectrogram_to_wave(spec_s, bp['hl'], mp, d, is_v51_model), bp['sr'], sr, res_type=wav_resolution)
            else: # mid
                if is_v51_model:
                    spec_s *= get_hp_filter_mask(spec_s.shape[1], bp['hpf_start'], bp['hpf_stop'] - 1)
                    spec_s *= get_lp_filter_mask(spec_s.shape[1], bp['lpf_start'], bp['lpf_stop'])
                else:
                    spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1)
                    spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop'])
                    
                wave2 = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp, d, is_v51_model))
                wave = librosa.resample(wave2, bp['sr'], sr, res_type=wav_resolution)
        
    return wave

def get_lp_filter_mask(n_bins, bin_start, bin_stop):
    mask = np.concatenate([
        np.ones((bin_start - 1, 1)),
        np.linspace(1, 0, bin_stop - bin_start + 1)[:, None],
        np.zeros((n_bins - bin_stop, 1))
    ], axis=0)

    return mask
    
def get_hp_filter_mask(n_bins, bin_start, bin_stop):
    mask = np.concatenate([
        np.zeros((bin_stop + 1, 1)),
        np.linspace(0, 1, 1 + bin_start - bin_stop)[:, None],
        np.ones((n_bins - bin_start - 2, 1))
    ], axis=0)

    return mask

def fft_lp_filter(spec, bin_start, bin_stop):
    g = 1.0
    for b in range(bin_start, bin_stop):
        g -= 1 / (bin_stop - bin_start)
        spec[:, b, :] = g * spec[:, b, :]
        
    spec[:, bin_stop:, :] *= 0

    return spec

def fft_hp_filter(spec, bin_start, bin_stop):
    g = 1.0
    for b in range(bin_start, bin_stop, -1):
        g -= 1 / (bin_start - bin_stop)
        spec[:, b, :] = g * spec[:, b, :]
    
    spec[:, 0:bin_stop+1, :] *= 0

    return spec

def spectrogram_to_wave_old(spec, hop_length=1024):
    if spec.ndim == 2:
        wave = librosa.istft(spec, hop_length=hop_length)
    elif spec.ndim == 3:
        spec_left = np.asfortranarray(spec[0])
        spec_right = np.asfortranarray(spec[1])

        wave_left = librosa.istft(spec_left, hop_length=hop_length)
        wave_right = librosa.istft(spec_right, hop_length=hop_length)
        wave = np.asfortranarray([wave_left, wave_right])

    return wave
    
def wave_to_spectrogram_old(wave, hop_length, n_fft):
    wave_left = np.asfortranarray(wave[0])
    wave_right = np.asfortranarray(wave[1])

    spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length)
    spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
    
    spec = np.asfortranarray([spec_left, spec_right])

    return spec

def mirroring(a, spec_m, input_high_end, mp):
    if 'mirroring' == a:
        mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1)
        mirror = mirror * np.exp(1.j * np.angle(input_high_end))
        
        return np.where(np.abs(input_high_end) <= np.abs(mirror), input_high_end, mirror)
        
    if 'mirroring2' == a:
        mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1)
        mi = np.multiply(mirror, input_high_end * 1.7)
        
        return np.where(np.abs(input_high_end) <= np.abs(mi), input_high_end, mi)

def adjust_aggr(mask, is_non_accom_stem, aggressiveness):
    aggr = aggressiveness['value'] * 2

    if aggr != 0:
        if is_non_accom_stem:
            aggr = 1 - aggr
    
        aggr = [aggr, aggr]
    
        if aggressiveness['aggr_correction'] is not None:
            aggr[0] += aggressiveness['aggr_correction']['left']
            aggr[1] += aggressiveness['aggr_correction']['right']

        for ch in range(2):
            mask[ch, :aggressiveness['split_bin']] = np.power(mask[ch, :aggressiveness['split_bin']], 1 + aggr[ch] / 3)
            mask[ch, aggressiveness['split_bin']:] = np.power(mask[ch, aggressiveness['split_bin']:], 1 + aggr[ch])

    return mask

def stft(wave, nfft, hl):
    wave_left = np.asfortranarray(wave[0])
    wave_right = np.asfortranarray(wave[1])
    spec_left = librosa.stft(wave_left, nfft, hop_length=hl)
    spec_right = librosa.stft(wave_right, nfft, hop_length=hl)
    spec = np.asfortranarray([spec_left, spec_right])

    return spec

def istft(spec, hl):
    spec_left = np.asfortranarray(spec[0])
    spec_right = np.asfortranarray(spec[1])
    wave_left = librosa.istft(spec_left, hop_length=hl)
    wave_right = librosa.istft(spec_right, hop_length=hl)
    wave = np.asfortranarray([wave_left, wave_right])

    return wave

def spec_effects(wave, algorithm='Default', value=None):
    spec = [stft(wave[0],2048,1024), stft(wave[1],2048,1024)]
    if algorithm == 'Min_Mag':
        v_spec_m = np.where(np.abs(spec[1]) <= np.abs(spec[0]), spec[1], spec[0])
        wave = istft(v_spec_m,1024)
    elif algorithm == 'Max_Mag':
        v_spec_m = np.where(np.abs(spec[1]) >= np.abs(spec[0]), spec[1], spec[0])
        wave = istft(v_spec_m,1024)
    elif algorithm == 'Default':
        wave = (wave[1] * value) + (wave[0] * (1-value))
    elif algorithm == 'Invert_p':
        X_mag = np.abs(spec[0])
        y_mag = np.abs(spec[1])            
        max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)  
        v_spec = spec[1] - max_mag * np.exp(1.j * np.angle(spec[0]))
        wave = istft(v_spec,1024)
            
    return wave      

def spectrogram_to_wave_no_mp(spec, n_fft=2048, hop_length=1024):
    wave = librosa.istft(spec, n_fft=n_fft, hop_length=hop_length)
    
    if wave.ndim == 1:
        wave = np.asfortranarray([wave,wave])

    return wave

def wave_to_spectrogram_no_mp(wave):
    
    spec = librosa.stft(wave, n_fft=2048, hop_length=1024)
    
    if spec.ndim == 1:
        spec = np.asfortranarray([spec,spec])

    return spec

def invert_audio(specs, invert_p=True):
    
    ln = min([specs[0].shape[2], specs[1].shape[2]])
    specs[0] = specs[0][:,:,:ln]
    specs[1] = specs[1][:,:,:ln]
        
    if invert_p:
        X_mag = np.abs(specs[0])
        y_mag = np.abs(specs[1])            
        max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)  
        v_spec = specs[1] - max_mag * np.exp(1.j * np.angle(specs[0]))
    else:
        specs[1] = reduce_vocal_aggressively(specs[0], specs[1], 0.2)
        v_spec = specs[0] - specs[1]

    return v_spec

def invert_stem(mixture, stem):
    mixture = wave_to_spectrogram_no_mp(mixture)
    stem = wave_to_spectrogram_no_mp(stem)
    output = spectrogram_to_wave_no_mp(invert_audio([mixture, stem]))

    return -output.T

def ensembling(a, inputs, is_wavs=False): 

    for i in range(1, len(inputs)):
        if i == 1:
            input = inputs[0]

        if is_wavs:
            ln = min([input.shape[1], inputs[i].shape[1]])
            input = input[:,:ln]
            inputs[i] = inputs[i][:,:ln]
        else:
            ln = min([input.shape[2], inputs[i].shape[2]])
            input = input[:,:,:ln]
            inputs[i] = inputs[i][:,:,:ln]
        
        if MIN_SPEC == a:
            input = np.where(np.abs(inputs[i]) <= np.abs(input), inputs[i], input)
        if MAX_SPEC == a:
            input = np.where(np.abs(inputs[i]) >= np.abs(input), inputs[i], input)  

    #linear_ensemble
    #input = ensemble_wav(inputs, split_size=1)

    return input

def ensemble_for_align(waves):
    
    specs = []
    
    for wav in waves:
        spec = wave_to_spectrogram_no_mp(wav.T)
        specs.append(spec)
        
    wav_aligned = spectrogram_to_wave_no_mp(ensembling(MIN_SPEC, specs)).T
    wav_aligned = match_array_shapes(wav_aligned, waves[1], is_swap=True)    
   
    return wav_aligned
    
def ensemble_inputs(audio_input, algorithm, is_normalization, wav_type_set, save_path, is_wave=False, is_array=False):

    wavs_ = []
    
    if algorithm == AVERAGE:
        output = average_audio(audio_input)
        samplerate = 44100
    else:
        specs = []
        
        for i in range(len(audio_input)):  
            wave, samplerate = librosa.load(audio_input[i], mono=False, sr=44100)
            wavs_.append(wave)
            spec = wave if is_wave else wave_to_spectrogram_no_mp(wave)
            specs.append(spec)
        
        wave_shapes = [w.shape[1] for w in wavs_]
        target_shape = wavs_[wave_shapes.index(max(wave_shapes))]
        
        if is_wave:
            output = ensembling(algorithm, specs, is_wavs=True)
        else:
            output = spectrogram_to_wave_no_mp(ensembling(algorithm, specs))
            
        output = to_shape(output, target_shape.shape)

    sf.write(save_path, normalize(output.T, is_normalization), samplerate, subtype=wav_type_set)

def to_shape(x, target_shape):
    padding_list = []
    for x_dim, target_dim in zip(x.shape, target_shape):
        pad_value = (target_dim - x_dim)
        pad_tuple = ((0, pad_value))
        padding_list.append(pad_tuple)
    
    return np.pad(x, tuple(padding_list), mode='constant')

def to_shape_minimize(x: np.ndarray, target_shape):
    
    padding_list = []
    for x_dim, target_dim in zip(x.shape, target_shape):
        pad_value = (target_dim - x_dim)
        pad_tuple = ((0, pad_value))
        padding_list.append(pad_tuple)
    
    return np.pad(x, tuple(padding_list), mode='constant')

def detect_leading_silence(audio, sr, silence_threshold=0.007, frame_length=1024):
    """

    Detect silence at the beginning of an audio signal.



    :param audio: np.array, audio signal

    :param sr: int, sample rate

    :param silence_threshold: float, magnitude threshold below which is considered silence

    :param frame_length: int, the number of samples to consider for each check



    :return: float, duration of the leading silence in milliseconds

    """
    
    if len(audio.shape) == 2:
        # If stereo, pick the channel with more energy to determine the silence
        channel = np.argmax(np.sum(np.abs(audio), axis=1))
        audio = audio[channel]
    
    for i in range(0, len(audio), frame_length):
        if np.max(np.abs(audio[i:i+frame_length])) > silence_threshold:
            return (i / sr) * 1000

    return (len(audio) / sr) * 1000

def adjust_leading_silence(target_audio, reference_audio, silence_threshold=0.01, frame_length=1024):
    """

    Adjust the leading silence of the target_audio to match the leading silence of the reference_audio.



    :param target_audio: np.array, audio signal that will have its silence adjusted

    :param reference_audio: np.array, audio signal used as a reference

    :param sr: int, sample rate

    :param silence_threshold: float, magnitude threshold below which is considered silence

    :param frame_length: int, the number of samples to consider for each check



    :return: np.array, target_audio adjusted to have the same leading silence as reference_audio

    """
    
    def find_silence_end(audio):
        if len(audio.shape) == 2:
            # If stereo, pick the channel with more energy to determine the silence
            channel = np.argmax(np.sum(np.abs(audio), axis=1))
            audio_mono = audio[channel]
        else:
            audio_mono = audio

        for i in range(0, len(audio_mono), frame_length):
            if np.max(np.abs(audio_mono[i:i+frame_length])) > silence_threshold:
                return i
        return len(audio_mono)

    ref_silence_end = find_silence_end(reference_audio)
    target_silence_end = find_silence_end(target_audio)
    silence_difference = ref_silence_end - target_silence_end

    try:
        ref_silence_end_p = (ref_silence_end / 44100) * 1000
        target_silence_end_p = (target_silence_end / 44100) * 1000
        silence_difference_p = ref_silence_end_p - target_silence_end_p
        print("silence_difference: ", silence_difference_p)
    except Exception as e:
        pass

    if silence_difference > 0:  # Add silence to target_audio
        if len(target_audio.shape) == 2:  # stereo
            silence_to_add = np.zeros((target_audio.shape[0], silence_difference))
        else:  # mono
            silence_to_add = np.zeros(silence_difference)
        return np.hstack((silence_to_add, target_audio))
    elif silence_difference < 0:  # Remove silence from target_audio
        if len(target_audio.shape) == 2:  # stereo
            return target_audio[:, -silence_difference:]
        else:  # mono
            return target_audio[-silence_difference:]
    else:  # No adjustment needed
        return target_audio

def match_array_shapes(array_1:np.ndarray, array_2:np.ndarray, is_swap=False):
    
    if is_swap:
        array_1, array_2 = array_1.T, array_2.T
    
    #print("before", array_1.shape, array_2.shape)
    if array_1.shape[1] > array_2.shape[1]:
        array_1 = array_1[:,:array_2.shape[1]] 
    elif array_1.shape[1] < array_2.shape[1]:
        padding = array_2.shape[1] - array_1.shape[1]
        array_1 = np.pad(array_1, ((0,0), (0,padding)), 'constant', constant_values=0)
    
    #print("after", array_1.shape, array_2.shape)
    
    if is_swap:
        array_1, array_2 = array_1.T, array_2.T
        
    return array_1

def match_mono_array_shapes(array_1: np.ndarray, array_2: np.ndarray):
    
    if len(array_1) > len(array_2):
        array_1 = array_1[:len(array_2)]
    elif len(array_1) < len(array_2):
        padding = len(array_2) - len(array_1)
        array_1 = np.pad(array_1, (0, padding), 'constant', constant_values=0)
        
    return array_1

def change_pitch_semitones(y, sr, semitone_shift):
    factor = 2 ** (semitone_shift / 12)  # Convert semitone shift to factor for resampling
    y_pitch_tuned = []
    for y_channel in y:
        y_pitch_tuned.append(librosa.resample(y_channel, sr, sr*factor, res_type=wav_resolution_float_resampling))
    y_pitch_tuned = np.array(y_pitch_tuned)
    new_sr = sr * factor
    return y_pitch_tuned, new_sr

def augment_audio(export_path, audio_file, rate, is_normalization, wav_type_set, save_format=None, is_pitch=False, is_time_correction=True):

    wav, sr = librosa.load(audio_file, sr=44100, mono=False)

    if wav.ndim == 1:
        wav = np.asfortranarray([wav,wav])

    if not is_time_correction:
        wav_mix = change_pitch_semitones(wav, 44100, semitone_shift=-rate)[0]
    else:
        if is_pitch:
            wav_1 = pyrb.pitch_shift(wav[0], sr, rate, rbargs=None)
            wav_2 = pyrb.pitch_shift(wav[1], sr, rate, rbargs=None)
        else:
            wav_1 = pyrb.time_stretch(wav[0], sr, rate, rbargs=None)
            wav_2 = pyrb.time_stretch(wav[1], sr, rate, rbargs=None)

        if wav_1.shape > wav_2.shape:
            wav_2 = to_shape(wav_2, wav_1.shape)
        if wav_1.shape < wav_2.shape:
            wav_1 = to_shape(wav_1, wav_2.shape)
            
        wav_mix = np.asfortranarray([wav_1, wav_2])
    
    sf.write(export_path, normalize(wav_mix.T, is_normalization), sr, subtype=wav_type_set)
    save_format(export_path)
    
def average_audio(audio):
    
    waves = []
    wave_shapes = []
    final_waves = []

    for i in range(len(audio)):
        wave = librosa.load(audio[i], sr=44100, mono=False)
        waves.append(wave[0])
        wave_shapes.append(wave[0].shape[1])

    wave_shapes_index = wave_shapes.index(max(wave_shapes))
    target_shape = waves[wave_shapes_index]
    waves.pop(wave_shapes_index)
    final_waves.append(target_shape)

    for n_array in waves:
        wav_target = to_shape(n_array, target_shape.shape)
        final_waves.append(wav_target)

    waves = sum(final_waves)
    waves = waves/len(audio)

    return waves
    
def average_dual_sources(wav_1, wav_2, value):
    
    if wav_1.shape > wav_2.shape:
        wav_2 = to_shape(wav_2, wav_1.shape)
    if wav_1.shape < wav_2.shape:
        wav_1 = to_shape(wav_1, wav_2.shape)

    wave = (wav_1 * value) + (wav_2 * (1-value))

    return wave
       
def reshape_sources(wav_1: np.ndarray, wav_2: np.ndarray):
    
    if wav_1.shape > wav_2.shape:
        wav_2 = to_shape(wav_2, wav_1.shape)
    if wav_1.shape < wav_2.shape:
        ln = min([wav_1.shape[1], wav_2.shape[1]])
        wav_2 = wav_2[:,:ln]

    ln = min([wav_1.shape[1], wav_2.shape[1]])
    wav_1 = wav_1[:,:ln]
    wav_2 = wav_2[:,:ln]

    return wav_2
    
def reshape_sources_ref(wav_1_shape, wav_2: np.ndarray):
    
    if wav_1_shape > wav_2.shape:
        wav_2 = to_shape(wav_2, wav_1_shape)

    return wav_2
    
def combine_arrarys(audio_sources, is_swap=False):
    source = np.zeros_like(max(audio_sources, key=np.size))
    
    for v in audio_sources:
        v = match_array_shapes(v, source, is_swap=is_swap)
        source += v
        
    return source
    
def combine_audio(paths: list, audio_file_base=None, wav_type_set='FLOAT', save_format=None):
    
    source = combine_arrarys([load_audio(i) for i in paths])
    save_path = f"{audio_file_base}_combined.wav"
    sf.write(save_path, source.T, 44100, subtype=wav_type_set)
    save_format(save_path)
    
def reduce_mix_bv(inst_source, voc_source, reduction_rate=0.9):
    # Reduce the volume
    inst_source = inst_source * (1 - reduction_rate)

    mix_reduced = combine_arrarys([inst_source, voc_source], is_swap=True)

    return mix_reduced
    
def organize_inputs(inputs):
    input_list = {
        "target":None,
        "reference":None,
        "reverb":None,
        "inst":None
    }
    
    for i in inputs:
        if i.endswith("_(Vocals).wav"):
            input_list["reference"] = i
        elif "_RVC_" in i:
            input_list["target"] = i
        elif i.endswith("reverbed_stem.wav"):
            input_list["reverb"] = i
        elif i.endswith("_(Instrumental).wav"):
            input_list["inst"] = i
            
    return input_list
      
def check_if_phase_inverted(wav1, wav2, is_mono=False):
    # Load the audio files
    if not is_mono:
        wav1 = np.mean(wav1, axis=0)
        wav2 = np.mean(wav2, axis=0)
    
    # Compute the correlation
    correlation = np.corrcoef(wav1[:1000], wav2[:1000])
    
    return correlation[0,1] < 0
         
def align_audio(file1, 

                file2, 

                file2_aligned, 

                file_subtracted, 

                wav_type_set, 

                is_save_aligned, 

                command_Text, 

                save_format, 

                align_window:list, 

                align_intro_val:list,

                db_analysis:tuple,

                set_progress_bar,

                phase_option,

                phase_shifts,

                is_match_silence,

                is_spec_match):
    
    global progress_value
    progress_value = 0
    is_mono = False
    
    def get_diff(a, b):
        corr = np.correlate(a, b, "full")
        diff = corr.argmax() - (b.shape[0] - 1)

        return diff

    def progress_bar(length):
        global progress_value
        progress_value += 1

        if (0.90/length*progress_value) >= 0.9:
            length = progress_value + 1

        set_progress_bar(0.1, (0.9/length*progress_value))
    
    # read tracks
    
    if file1.endswith(".mp3") and is_macos:
        length1 = rerun_mp3(file1)
        wav1, sr1 = librosa.load(file1, duration=length1, sr=44100, mono=False)
    else:
        wav1, sr1 = librosa.load(file1, sr=44100, mono=False)

    if file2.endswith(".mp3") and is_macos:
        length2 = rerun_mp3(file2)
        wav2, sr2 = librosa.load(file2, duration=length2, sr=44100, mono=False)
    else:
        wav2, sr2 = librosa.load(file2, sr=44100, mono=False)

    if wav1.ndim == 1 and wav2.ndim == 1:
         is_mono = True
    elif wav1.ndim == 1:
        wav1 = np.asfortranarray([wav1,wav1])
    elif wav2.ndim == 1:
        wav2 = np.asfortranarray([wav2,wav2])
    
    # Check if phase is inverted
    if phase_option == AUTO_PHASE:
        if check_if_phase_inverted(wav1, wav2, is_mono=is_mono):
            wav2 = -wav2
    elif phase_option == POSITIVE_PHASE:
        wav2 = +wav2
    elif phase_option == NEGATIVE_PHASE:
        wav2 = -wav2
    
    if is_match_silence:
        wav2 = adjust_leading_silence(wav2, wav1)
    
    wav1_length = int(librosa.get_duration(y=wav1, sr=44100))
    wav2_length = int(librosa.get_duration(y=wav2, sr=44100))
    
    if not is_mono:
        wav1 = wav1.transpose()
        wav2 = wav2.transpose()

    wav2_org = wav2.copy()
    
    command_Text("Processing files... \n")
    seconds_length = min(wav1_length, wav2_length)
    
    wav2_aligned_sources = []
    
    for sec_len in align_intro_val:
        # pick a position at 1 second in and get diff
        sec_seg = 1 if sec_len == 1 else int(seconds_length // sec_len)
        index = sr1*sec_seg  # 1 second in, assuming sr1 = sr2 = 44100

        if is_mono:
            samp1, samp2 = wav1[index : index + sr1], wav2[index : index + sr1]
            diff = get_diff(samp1, samp2)
            #print(f"Estimated difference: {diff}\n")
        else:
            index = sr1*sec_seg  # 1 second in, assuming sr1 = sr2 = 44100
            samp1, samp2 = wav1[index : index + sr1, 0], wav2[index : index + sr1, 0]
            samp1_r, samp2_r = wav1[index : index + sr1, 1], wav2[index : index + sr1, 1]
            diff, diff_r = get_diff(samp1, samp2), get_diff(samp1_r, samp2_r)
            #print(f"Estimated difference Left Channel: {diff}\nEstimated difference Right Channel: {diff_r}\n")
        
        # make aligned track 2
        if diff > 0:
            zeros_to_append = np.zeros(diff) if is_mono else np.zeros((diff, 2))
            wav2_aligned = np.append(zeros_to_append, wav2_org, axis=0)
        elif diff < 0:
            wav2_aligned = wav2_org[-diff:]
        else:
            wav2_aligned = wav2_org
            #command_Text(f"Audio files already aligned.\n")
            
        if not any(np.array_equal(wav2_aligned, source) for source in wav2_aligned_sources):
            wav2_aligned_sources.append(wav2_aligned)

    #print("Unique Sources: ", len(wav2_aligned_sources))
    
    unique_sources = len(wav2_aligned_sources)
    
    sub_mapper_big_mapper = {}

    for s in wav2_aligned_sources:
        wav2_aligned = match_mono_array_shapes(s, wav1) if is_mono else match_array_shapes(s, wav1, is_swap=True)
        
        if align_window:
            wav_sub = time_correction(wav1, wav2_aligned, seconds_length, align_window=align_window, db_analysis=db_analysis, progress_bar=progress_bar, unique_sources=unique_sources, phase_shifts=phase_shifts)
            wav_sub_size = np.abs(wav_sub).mean()  
            sub_mapper_big_mapper = {**sub_mapper_big_mapper, **{wav_sub_size:wav_sub}}
        else:
            wav2_aligned = wav2_aligned * np.power(10, db_analysis[0] / 20)
            db_range = db_analysis[1]
            
            for db_adjustment in db_range:
                # Adjust the dB of track2
                s_adjusted = wav2_aligned * (10 ** (db_adjustment / 20))
                wav_sub = wav1 - s_adjusted
                wav_sub_size = np.abs(wav_sub).mean() 
                sub_mapper_big_mapper = {**sub_mapper_big_mapper, **{wav_sub_size:wav_sub}}
            
        #print(sub_mapper_big_mapper.keys(), min(sub_mapper_big_mapper.keys()))
    
    sub_mapper_value_list = list(sub_mapper_big_mapper.values())
    
    if is_spec_match and len(sub_mapper_value_list) >= 2:
        #print("using spec ensemble with align")
        wav_sub = ensemble_for_align(list(sub_mapper_big_mapper.values()))
    else:
        #print("using linear ensemble with align")
        wav_sub = ensemble_wav(list(sub_mapper_big_mapper.values()))
         
    #print(f"Mix Mean: {np.abs(wav1).mean()}\nInst Mean: {np.abs(wav2).mean()}")
    #print('Final: ', np.abs(wav_sub).mean())
    wav_sub = np.clip(wav_sub, -1, +1)
    
    command_Text(f"Saving inverted track... ")

    if is_save_aligned or is_spec_match:
        wav1 = match_mono_array_shapes(wav1, wav_sub) if is_mono else match_array_shapes(wav1, wav_sub, is_swap=True)
        wav2_aligned = wav1 - wav_sub

        if is_spec_match:
            if wav1.ndim == 1 and wav2.ndim == 1:
                wav2_aligned = np.asfortranarray([wav2_aligned, wav2_aligned]).T
                wav1 = np.asfortranarray([wav1, wav1]).T
            
            wav2_aligned = ensemble_for_align([wav2_aligned, wav1])
            wav_sub = wav1 - wav2_aligned
        
        if is_save_aligned:
            sf.write(file2_aligned, wav2_aligned, sr1, subtype=wav_type_set)
            save_format(file2_aligned)

    sf.write(file_subtracted, wav_sub, sr1, subtype=wav_type_set)
    save_format(file_subtracted)

def phase_shift_hilbert(signal, degree):
    analytic_signal = hilbert(signal)
    return np.cos(np.radians(degree)) * analytic_signal.real - np.sin(np.radians(degree)) * analytic_signal.imag

def get_phase_shifted_tracks(track, phase_shift):
    if phase_shift == 180:
        return [track, -track]

    step = phase_shift
    end = 180 - (180 % step) if 180 % step == 0 else 181
    phase_range = range(step, end, step)
    
    flipped_list = [track, -track]
    for i in phase_range:
        flipped_list.extend([phase_shift_hilbert(track, i), phase_shift_hilbert(track, -i)])

    return flipped_list

def time_correction(mix:np.ndarray, instrumental:np.ndarray, seconds_length, align_window, db_analysis, sr=44100, progress_bar=None, unique_sources=None, phase_shifts=NONE_P):
    # Function to align two tracks using cross-correlation

    def align_tracks(track1, track2):
        # A dictionary to store each version of track2_shifted and its mean absolute value
        shifted_tracks = {}

        # Loop to adjust dB of track2
        track2 = track2 * np.power(10, db_analysis[0] / 20)
        db_range = db_analysis[1]
        
        if phase_shifts == 190:
            track2_flipped = [track2]
        else:
            track2_flipped = get_phase_shifted_tracks(track2, phase_shifts)
            
        for db_adjustment in db_range:
            for t in track2_flipped:
                # Adjust the dB of track2
                track2_adjusted = t * (10 ** (db_adjustment / 20))
                corr = correlate(track1, track2_adjusted)
                delay = np.argmax(np.abs(corr)) - (len(track1) - 1)
                track2_shifted = np.roll(track2_adjusted, shift=delay)

                # Compute the mean absolute value of track2_shifted
                track2_shifted_sub = track1 - track2_shifted
                mean_abs_value = np.abs(track2_shifted_sub).mean()

                # Store track2_shifted and its mean absolute value in the dictionary
                shifted_tracks[mean_abs_value] = track2_shifted

        # Return the version of track2_shifted with the smallest mean absolute value
                
        return shifted_tracks[min(shifted_tracks.keys())]

    # Make sure the audio files have the same shape
    
    assert mix.shape == instrumental.shape, f"Audio files must have the same shape - Mix: {mix.shape}, Inst: {instrumental.shape}"
    
    seconds_length = seconds_length // 2

    sub_mapper = {}
    
    progress_update_interval = 120
    total_iterations = 0
    
    if len(align_window) > 2:
        progress_update_interval = 320
    
    for secs in align_window:
        step = secs / 2
        window_size = int(sr * secs)
        step_size = int(sr * step)
        
        if len(mix.shape) == 1:
            total_mono = (len(range(0, len(mix) - window_size, step_size))//progress_update_interval)*unique_sources
            total_iterations += total_mono
        else:
            total_stereo_ = len(range(0, len(mix[:, 0]) - window_size, step_size))*2
            total_stereo = (total_stereo_//progress_update_interval) * unique_sources
            total_iterations += total_stereo
    
    #print(total_iterations)
    
    for secs in align_window:
        sub = np.zeros_like(mix)
        divider = np.zeros_like(mix)
        step = secs / 2
        window_size = int(sr * secs)
        step_size = int(sr * step)
        window = np.hanning(window_size)

        # For the mono case:
        if len(mix.shape) == 1:
            # The files are mono
            counter = 0
            for i in range(0, len(mix) - window_size, step_size):
                counter += 1
                if counter % progress_update_interval == 0:
                    progress_bar(total_iterations)
                window_mix = mix[i:i+window_size] * window
                window_instrumental = instrumental[i:i+window_size] * window
                window_instrumental_aligned = align_tracks(window_mix, window_instrumental)
                sub[i:i+window_size] += window_mix - window_instrumental_aligned
                divider[i:i+window_size] += window
        else:
            # The files are stereo
            counter = 0
            for ch in range(mix.shape[1]):
                for i in range(0, len(mix[:, ch]) - window_size, step_size):
                    counter += 1
                    if counter % progress_update_interval == 0:
                        progress_bar(total_iterations)
                    window_mix = mix[i:i+window_size, ch] * window
                    window_instrumental = instrumental[i:i+window_size, ch] * window
                    window_instrumental_aligned = align_tracks(window_mix, window_instrumental)
                    sub[i:i+window_size, ch] += window_mix - window_instrumental_aligned
                    divider[i:i+window_size, ch] += window

        # Normalize the result by the overlap count
        sub = np.where(divider > 1e-6, sub / divider, sub)
        sub_size = np.abs(sub).mean()
        sub_mapper = {**sub_mapper, **{sub_size: sub}}

    #print("SUB_LEN", len(list(sub_mapper.values())))

    sub = ensemble_wav(list(sub_mapper.values()), split_size=12)
          
    return sub

def ensemble_wav(waveforms, split_size=240):
    # Create a dictionary to hold the thirds of each waveform and their mean absolute values
    waveform_thirds = {i: np.array_split(waveform, split_size) for i, waveform in enumerate(waveforms)}

    # Initialize the final waveform
    final_waveform = []

    # For chunk
    for third_idx in range(split_size):
        # Compute the mean absolute value of each third from each waveform
        means = [np.abs(waveform_thirds[i][third_idx]).mean() for i in range(len(waveforms))]

        # Find the index of the waveform with the lowest mean absolute value for this third
        min_index = np.argmin(means)

        # Add the least noisy third to the final waveform
        final_waveform.append(waveform_thirds[min_index][third_idx])

    # Concatenate all the thirds to create the final waveform
    final_waveform = np.concatenate(final_waveform)

    return final_waveform

def ensemble_wav_min(waveforms):
    for i in range(1, len(waveforms)):
        if i == 1:
            wave = waveforms[0]

        ln = min(len(wave), len(waveforms[i]))
        wave = wave[:ln]
        waveforms[i] = waveforms[i][:ln]

        wave = np.where(np.abs(waveforms[i]) <= np.abs(wave), waveforms[i], wave)
        
    return wave

def align_audio_test(wav1, wav2, sr1=44100):
    def get_diff(a, b):
        corr = np.correlate(a, b, "full")
        diff = corr.argmax() - (b.shape[0] - 1)
        return diff
  
    # read tracks
    wav1 = wav1.transpose()
    wav2 = wav2.transpose()

    #print(f"Audio file shapes: {wav1.shape} / {wav2.shape}\n")
    
    wav2_org = wav2.copy()
    
    # pick a position at 1 second in and get diff
    index = sr1#*seconds_length  # 1 second in, assuming sr1 = sr2 = 44100
    samp1 = wav1[index : index + sr1, 0] # currently use left channel
    samp2 = wav2[index : index + sr1, 0]
    diff = get_diff(samp1, samp2)
    
  # make aligned track 2
    if diff > 0:
        wav2_aligned = np.append(np.zeros((diff, 1)), wav2_org, axis=0)
    elif diff < 0:
        wav2_aligned = wav2_org[-diff:]
    else:
        wav2_aligned = wav2_org
        
    return wav2_aligned

def load_audio(audio_file):
    wav, sr = librosa.load(audio_file, sr=44100, mono=False)

    if wav.ndim == 1:
        wav = np.asfortranarray([wav,wav])
        
    return wav

def rerun_mp3(audio_file):
    with audioread.audio_open(audio_file) as f:
        track_length = int(f.duration)

    return track_length