tqdm progress bar
Browse files- args.py +3 -3
- inst.py +18 -0
- requirements.txt +2 -1
args.py
CHANGED
@@ -173,7 +173,7 @@ mdx23c_8kfft_instvoc_hq_process_data = {
|
|
173 |
'set_progress_bar': lambda step, inference_iterations=0: print(
|
174 |
f"iteration {inference_iterations} of step #{step}"),
|
175 |
'write_to_console': lambda progress_text, base_text='': print(
|
176 |
-
f"{progress_text} {base_text}"),
|
177 |
'process_iteration': lambda iteration: iteration + 1,
|
178 |
'cached_source_callback': cached_source_callback,
|
179 |
'cached_model_source_holder': cached_model_source_holder,
|
@@ -301,7 +301,7 @@ uvr_mdx_net_voc_ft_process_data = {
|
|
301 |
'set_progress_bar': lambda step, inference_iterations=0: print(
|
302 |
f"iteration {inference_iterations} of step #{step}"),
|
303 |
'write_to_console': lambda progress_text, base_text='': print(
|
304 |
-
f"{progress_text} {base_text}"),
|
305 |
'process_iteration': lambda iteration: iteration + 1,
|
306 |
'cached_source_callback': cached_source_callback,
|
307 |
'cached_model_source_holder': cached_model_source_holder,
|
@@ -425,7 +425,7 @@ htdemucs_ft_process_data = {
|
|
425 |
'set_progress_bar': lambda step, inference_iterations=0: print(
|
426 |
f"iteration {inference_iterations} of step #{step}"),
|
427 |
'write_to_console': lambda progress_text, base_text='': print(
|
428 |
-
f"{progress_text} {base_text}"),
|
429 |
'process_iteration': lambda iteration: iteration + 1,
|
430 |
'cached_source_callback': cached_source_callback,
|
431 |
'cached_model_source_holder': cached_model_source_holder,
|
|
|
173 |
'set_progress_bar': lambda step, inference_iterations=0: print(
|
174 |
f"iteration {inference_iterations} of step #{step}"),
|
175 |
'write_to_console': lambda progress_text, base_text='': print(
|
176 |
+
f"{progress_text} {base_text} @ MDX23C Model: MDX23C-InstVoc HQ"),
|
177 |
'process_iteration': lambda iteration: iteration + 1,
|
178 |
'cached_source_callback': cached_source_callback,
|
179 |
'cached_model_source_holder': cached_model_source_holder,
|
|
|
301 |
'set_progress_bar': lambda step, inference_iterations=0: print(
|
302 |
f"iteration {inference_iterations} of step #{step}"),
|
303 |
'write_to_console': lambda progress_text, base_text='': print(
|
304 |
+
f"{progress_text} {base_text} @ MDX-Net Model: UVR-MDX-NET Voc FT"),
|
305 |
'process_iteration': lambda iteration: iteration + 1,
|
306 |
'cached_source_callback': cached_source_callback,
|
307 |
'cached_model_source_holder': cached_model_source_holder,
|
|
|
425 |
'set_progress_bar': lambda step, inference_iterations=0: print(
|
426 |
f"iteration {inference_iterations} of step #{step}"),
|
427 |
'write_to_console': lambda progress_text, base_text='': print(
|
428 |
+
f"{progress_text} {base_text} @ Demucs v4: htdemucs_ft"),
|
429 |
'process_iteration': lambda iteration: iteration + 1,
|
430 |
'cached_source_callback': cached_source_callback,
|
431 |
'cached_model_source_holder': cached_model_source_holder,
|
inst.py
CHANGED
@@ -5,6 +5,8 @@ from datetime import datetime
|
|
5 |
from pathlib import Path
|
6 |
from time import sleep
|
7 |
|
|
|
|
|
8 |
from args import mdx23c_8kfft_instvoc_hq_process_data, htdemucs_ft_process_data, uvr_mdx_net_voc_ft_process_data
|
9 |
from download import download_model, get_model_file
|
10 |
from gui_data.constants import VR_ARCH_TYPE, MDX_ARCH_TYPE, DEMUCS_ARCH_TYPE, ENSEMBLE_MODE, TIME_STRETCH, \
|
@@ -36,11 +38,25 @@ def run_ensemble_models(audio_path, export_path, format=WAV, clean=True):
|
|
36 |
vocals_export_paths = []
|
37 |
|
38 |
for process_data in process_datas:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
current_model = process_data['model_data']
|
40 |
audio_file_base = Path(audio_path).stem + '_' + current_model.model_basename
|
41 |
process_data['export_path'] = temp_export_path
|
42 |
process_data['audio_file_base'] = audio_file_base
|
43 |
process_data['audio_file'] = audio_path
|
|
|
|
|
44 |
|
45 |
if current_model.process_method == VR_ARCH_TYPE:
|
46 |
seperator = SeperateVR(current_model, process_data)
|
@@ -76,6 +92,8 @@ def run_ensemble_models(audio_path, export_path, format=WAV, clean=True):
|
|
76 |
|
77 |
|
78 |
def ensemble(stem_outputs, stem_save_path, format=WAV):
|
|
|
|
|
79 |
algorithm = 'Average'
|
80 |
is_normalization = True
|
81 |
spec_utils.ensemble_inputs(stem_outputs, algorithm, is_normalization, 'PCM_16', stem_save_path, is_wave=True)
|
|
|
5 |
from pathlib import Path
|
6 |
from time import sleep
|
7 |
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
from args import mdx23c_8kfft_instvoc_hq_process_data, htdemucs_ft_process_data, uvr_mdx_net_voc_ft_process_data
|
11 |
from download import download_model, get_model_file
|
12 |
from gui_data.constants import VR_ARCH_TYPE, MDX_ARCH_TYPE, DEMUCS_ARCH_TYPE, ENSEMBLE_MODE, TIME_STRETCH, \
|
|
|
38 |
vocals_export_paths = []
|
39 |
|
40 |
for process_data in process_datas:
|
41 |
+
progress_bar = tqdm(total=100, desc=process_data["model_name"], unit="%")
|
42 |
+
|
43 |
+
def set_progress_bar(step, inference_iterations=0):
|
44 |
+
# print(step, inference_iterations, round(inference_iterations * 100, 2))
|
45 |
+
if inference_iterations > 0:
|
46 |
+
progress_bar.update(round(inference_iterations * 100, 2) - progress_bar.n)
|
47 |
+
|
48 |
+
def write_to_console(progress_text, base_text=''):
|
49 |
+
text = f"{progress_text} {base_text}"
|
50 |
+
if text.strip():
|
51 |
+
return f'{text} @ process_data["model_name"]'
|
52 |
+
|
53 |
current_model = process_data['model_data']
|
54 |
audio_file_base = Path(audio_path).stem + '_' + current_model.model_basename
|
55 |
process_data['export_path'] = temp_export_path
|
56 |
process_data['audio_file_base'] = audio_file_base
|
57 |
process_data['audio_file'] = audio_path
|
58 |
+
process_data['set_progress_bar'] = set_progress_bar
|
59 |
+
process_data['write_to_console'] = write_to_console
|
60 |
|
61 |
if current_model.process_method == VR_ARCH_TYPE:
|
62 |
seperator = SeperateVR(current_model, process_data)
|
|
|
92 |
|
93 |
|
94 |
def ensemble(stem_outputs, stem_save_path, format=WAV):
|
95 |
+
stem_save_path = str(stem_save_path)
|
96 |
+
stem_outputs = [str(s) for s in stem_outputs]
|
97 |
algorithm = 'Average'
|
98 |
is_normalization = True
|
99 |
spec_utils.ensemble_inputs(stem_outputs, algorithm, is_normalization, 'PCM_16', stem_save_path, is_wave=True)
|
requirements.txt
CHANGED
@@ -42,5 +42,6 @@ PySoundFile==0.9.0.post1; sys_platform == 'darwin'
|
|
42 |
numpy==1.23.5
|
43 |
addict
|
44 |
matplotlib
|
45 |
-
sklearn==0.0.post12
|
|
|
46 |
click
|
|
|
42 |
numpy==1.23.5
|
43 |
addict
|
44 |
matplotlib
|
45 |
+
#sklearn==0.0.post12
|
46 |
+
scikit-learn
|
47 |
click
|