louisbrulenaudet
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -13,14 +13,74 @@ language:
|
|
13 |
- en
|
14 |
library_name: transformers
|
15 |
pipeline_tag: text-generation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
---
|
|
|
17 |
|
18 |
-
# Pearl-34B-ties
|
19 |
|
20 |
Pearl-34B-ties is a merge of the following models:
|
21 |
* [jondurbin/bagel-dpo-34b-v0.2](https://huggingface.co/jondurbin/bagel-dpo-34b-v0.2)
|
22 |
* [abacusai/MetaMath-Bagel-DPO-34B](https://huggingface.co/abacusai/MetaMath-Bagel-DPO-34B)
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
## Configuration
|
25 |
|
26 |
```yaml
|
@@ -65,4 +125,21 @@ pipeline = transformers.pipeline(
|
|
65 |
|
66 |
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
67 |
print(outputs[0]["generated_text"])
|
68 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
- en
|
14 |
library_name: transformers
|
15 |
pipeline_tag: text-generation
|
16 |
+
model-index:
|
17 |
+
- name: Pearl-7B-0211-ties
|
18 |
+
results:
|
19 |
+
- task:
|
20 |
+
type: text-generation
|
21 |
+
metrics:
|
22 |
+
- name: Average
|
23 |
+
type: Average
|
24 |
+
value: 75.48
|
25 |
+
- name: ARC
|
26 |
+
type: ARC
|
27 |
+
value: 70.99
|
28 |
+
- name: GSM8K
|
29 |
+
type: GSM8K
|
30 |
+
value: 67.48
|
31 |
+
- name: Winogrande
|
32 |
+
type: Winogrande
|
33 |
+
value: 82.64
|
34 |
+
- name: TruthfulQA
|
35 |
+
type: TruthfulQA
|
36 |
+
value: 70.32
|
37 |
+
- name: HellaSwag
|
38 |
+
type: HellaSwag
|
39 |
+
value: 84.83
|
40 |
+
- name: MMLU
|
41 |
+
type: MMLU
|
42 |
+
value: 76.63
|
43 |
+
source:
|
44 |
+
name: Open LLM Leaderboard
|
45 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
|
46 |
---
|
47 |
+
<center><img src='https://i.imgur.com/0xFTuAX.png' width='450px'></center>
|
48 |
|
49 |
+
# Pearl-34B-ties, an xtraordinary 7B model
|
50 |
|
51 |
Pearl-34B-ties is a merge of the following models:
|
52 |
* [jondurbin/bagel-dpo-34b-v0.2](https://huggingface.co/jondurbin/bagel-dpo-34b-v0.2)
|
53 |
* [abacusai/MetaMath-Bagel-DPO-34B](https://huggingface.co/abacusai/MetaMath-Bagel-DPO-34B)
|
54 |
|
55 |
+
## Evaluation
|
56 |
+
|
57 |
+
The evaluation was performed using the HuggingFace Open LLM Leaderboard.
|
58 |
+
|
59 |
+
| Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | #Params (B) |
|
60 |
+
|--------------------------------------------------|---------|-------|-----------|-------|------------|------------|-------|--------------|
|
61 |
+
| **louisbrulenaudet/Pearl-34B-ties** | **75.48** | 70.99 | 84.83 | **76.63** | 70.32 | 82.64 | 67.48 | 34.39 |
|
62 |
+
| **louisbrulenaudet/Pearl-7B-0211-ties** | **75.11** | **71.42** | **88.86** | 63.91 | **71.46** | **84.37** | 70.66 | 7.24 |
|
63 |
+
| NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO | 73.35 | 71.08 | 87.29 | 72.17 | 54.83 | 83.11 | 71.65 | 46.7 |
|
64 |
+
| argilla/notus-8x7b-experiment | 73.18 | 70.99 | 87.73 | 71.33 | 65.79 | 81.61 | 61.64 | 46.7 |
|
65 |
+
| **louisbrulenaudet/Pearl-7B-slerp** | 72.75 | 68.00 | 87.16 | 64.04 | 62.35 | 81.29 | **73.62** | 7.24 |
|
66 |
+
| mistralai/Mixtral-8x7B-Instruct-v0.1 | 72.7 | 70.14 | 87.55 | 71.4 | 64.98 | 81.06 | 61.11 | 46.7 |
|
67 |
+
| microsoft/Orca-2-13b | 61.98 | 60.92 | 79.85 | 60.3 | 56.42 | 76.56 | 37.83 | 13 |
|
68 |
+
| microsoft/phi-2 | 61.33 | 61.09 | 75.11 | 58.11 | 44.47 | 74.35 | 54.81 | 2.78 |
|
69 |
+
|
70 |
+
### Ties merging
|
71 |
+
|
72 |
+
TIES-Merging is a method designed to facilitate the efficient merging of multiple task-specific models into a consolidated multitask model. It addresses two primary challenges encountered in the process of model merging with a focus on maintaining objectivity.
|
73 |
+
|
74 |
+
One key challenge tackled by TIES-Merging involves addressing redundancy in model parameters. This is achieved by identifying and eliminating redundant parameters within task-specific models, emphasizing the changes made during fine-tuning and selectively retaining the top-k% most significant changes while discarding the rest.
|
75 |
+
|
76 |
+
Another challenge pertains to conflicts arising from disagreements between parameter signs across different models. TIES-Merging resolves these conflicts by creating a unified sign vector representing the most dominant direction of change across all models.
|
77 |
+
|
78 |
+
The TIES-Merging process consists of three steps:
|
79 |
+
|
80 |
+
- Trim: Reduces redundancy in task-specific models by retaining a fraction of the most significant parameters (density parameter) and resetting the remaining parameters to zero.
|
81 |
+
- Elect Sign: Resolves sign conflicts across different models by creating a unified sign vector based on the most dominant direction (positive or negative) in terms of cumulative magnitude.
|
82 |
+
- Disjoint Merge: Averages parameter values aligned with the unified sign vector, excluding zero values.
|
83 |
+
|
84 |
## Configuration
|
85 |
|
86 |
```yaml
|
|
|
125 |
|
126 |
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
127 |
print(outputs[0]["generated_text"])
|
128 |
+
```
|
129 |
+
|
130 |
+
## Citing & Authors
|
131 |
+
|
132 |
+
If you use this code in your research, please use the following BibTeX entry.
|
133 |
+
|
134 |
+
```BibTeX
|
135 |
+
@misc{louisbrulenaudet2023,
|
136 |
+
author = {Louis Brulé Naudet},
|
137 |
+
title = {Pearl-34B-ties, an xtraordinary 7B model},
|
138 |
+
year = {2023}
|
139 |
+
howpublished = {\url{https://huggingface.co/louisbrulenaudet/Pearl-34B-ties}},
|
140 |
+
}
|
141 |
+
```
|
142 |
+
|
143 |
+
## Feedback
|
144 |
+
|
145 |
+
If you have any feedback, please reach out at [[email protected]](mailto:[email protected]).
|