--- license: creativeml-openrail-m library_name: diffusers tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - controlnet - diffusers-training base_model: runwayml/stable-diffusion-v1-5 inference: true --- # controlnet-louistichelman/controlnet_streetview_canny_350.300 These are controlnet weights trained on runwayml/stable-diffusion-v1-5 with new type of conditioning. You can find some example images below. prompt: A google streetview image that shows a urban scene with a beauty-score of 31.616573, where scores are between 10 and 40 and higher scores indicate more beauty. ![images_0)](./images_0.png) prompt: A google streetview image that shows a urban scene with a beauty-score of 39.616564, where scores are between 10 and 40 and higher scores indicate more beauty. ![images_1)](./images_1.png) prompt: A google streetview image that shows a urban scene with a beauty-score of 23.188663, where scores are between 10 and 40 and higher scores indicate more beauty. ![images_2)](./images_2.png) prompt: A google streetview image that shows a urban scene with a beauty-score of 36.188663, where scores are between 10 and 40 and higher scores indicate more beauty. ![images_3)](./images_3.png) ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]