|
from diffusers import FluxPipeline, AutoencoderKL, AutoencoderTiny |
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler |
|
|
|
from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel |
|
import torch |
|
import torch._dynamo |
|
import gc |
|
from PIL import Image as img |
|
from PIL.Image import Image |
|
from pipelines.models import TextToImageRequest |
|
from torch import Generator |
|
import time |
|
from diffusers import FluxTransformer2DModel, DiffusionPipeline |
|
from torchao.quantization import quantize_, int8_weight_only |
|
|
|
Pipeline = None |
|
|
|
ckpt_id = "black-forest-labs/FLUX.1-schnell" |
|
def empty_cache(): |
|
start = time.time() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
print(f"Flush took: {time.time() - start}") |
|
|
|
def load_pipeline() -> Pipeline: |
|
empty_cache() |
|
|
|
dtype, device = torch.bfloat16, "cuda" |
|
|
|
empty_cache() |
|
pipeline = DiffusionPipeline.from_pretrained( |
|
ckpt_id, |
|
torch_dtype=dtype, |
|
) |
|
pipeline.enable_sequential_cpu_offload() |
|
for _ in range(2): |
|
empty_cache() |
|
pipeline(prompt="onomancy, aftergo, spirantic, Platyhelmia, modificator, drupaceous, jobbernowl, hereness", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256) |
|
|
|
return pipeline |
|
|
|
|
|
from datetime import datetime |
|
@torch.inference_mode() |
|
def infer(request: TextToImageRequest, pipeline: Pipeline) -> Image: |
|
empty_cache() |
|
try: |
|
generator = Generator("cuda").manual_seed(request.seed) |
|
image=pipeline(request.prompt,generator=generator, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256, height=request.height, width=request.width, output_type="pil").images[0] |
|
except: |
|
image = img.open("./loy.png") |
|
pass |
|
return(image) |
|
|