lovelyxs commited on
Commit
f7bef59
1 Parent(s): 9b6716a

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1134.23 +/- 127.11
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22d6534de698cce16ddef32aa6597a8832c8d23c1c390e156d7bb5cb43e3a82c
3
+ size 129531
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x78f4e56129e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78f4e5612a70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78f4e5612b00>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78f4e5612b90>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x78f4e5612c20>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x78f4e5612cb0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x78f4e5612d40>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78f4e5612dd0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x78f4e5612e60>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78f4e5612ef0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78f4e5612f80>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x78f4e5613010>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x78f4e5619280>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1689276998554462976,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "_last_obs": {
44
+ ":type:": "<class 'numpy.ndarray'>",
45
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAjxN7/U1NY/2JuLvjW4SL0lTgE/tH+IPzLw9r7TF3q+srkkPzOtIz93iXS/4tUawDVXxL7u7o4/AO1iPyss5DzMVVc/L4UDQA8FaD6E7QvA6OOcPjiYtD8QfmU+VvQQPRh4r789r+I+b6O/PhkqLD8SHQc/Rej6Pku7FT+DS6Q/TdWcPyRppr9Yvh2/8GYmv1vLcT8ti+w+RegBv2Sp8T/LyZe9yjXRPo6FZT9rtze/BaIjP+g3lL6Ceqi+ICAUPwCU9T6Nhcq/WFvVP6bQ0T4YeK+/po0QwG+jvz4ZKiw/pM/kPsCMGz9jCA8/XsgMP3ANpD8cqB+/qZKTvtdtcL+1/YY/h4TEu8/6Ib/eb40+ijJdP22KAz+ubDU/1KIwPzRfCr++af8+zW/ePks+Hj5iJPg+i2yJvtwHzz/0KoI+GHivv6aNEMBvo78+GSosP6glFT8kVbg/2drYPPU/sD/Zp48/jMLvP7NGi7/72r6/FIqEvqUYaj9+BUw/oLCkPz7Xnb9rXNE+znFgP22W7LxVTQY/yK93v9ySn742sKg/sKfyPhDM670ZTWW/ZGu6PsC+Oj89r+I+b6O/PmRUvr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
46
+ },
47
+ "_last_episode_starts": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
50
+ },
51
+ "_last_original_obs": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADzOGS1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9mOYvQAAAADLd/a/AAAAAI3Yir0AAAAAj8XgPwAAAACkoNS9AAAAALwU8D8AAAAAhyR6vQAAAAC8Euq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/H99tQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDeqwD0AAAAAJlPnvwAAAAA+xYW9AAAAAOO07j8AAAAAd2kHPgAAAACOpPY/AAAAAF8RKTwAAAAALEDdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOSlljYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBUDwu9AAAAAGLS6b8AAAAA5DmRvAAAAABD3eg/AAAAAHQtTD0AAAAA/Y3sPwAAAAB3RAm+AAAAAF52478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABbt1C2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAMw74vQAAAABmqNm/AAAAAC8hLrwAAAAAXgT/PwAAAADmowm+AAAAAF1g7D8AAAAAL5/aPQAAAACxnt2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
54
+ },
55
+ "_episode_num": 0,
56
+ "use_sde": true,
57
+ "sde_sample_freq": -1,
58
+ "_current_progress_remaining": 0.0,
59
+ "_stats_window_size": 100,
60
+ "ep_info_buffer": {
61
+ ":type:": "<class 'collections.deque'>",
62
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIaqlRekYXSMAWyUTegDjAF0lEdAqzNfrhR64XV9lChoBkdAkmv0EX+ERWgHTegDaAhHQKs1tqfvnbJ1fZQoaAZHQIz56vJRwZRoB03oA2gIR0CrN93/xUeddX2UKGgGR0CQ0QfvF3pwaAdN6ANoCEdAqz+G9pRGdHV9lChoBkdAiraUqpcX32gHTegDaAhHQKtDD3fQ8fV1fZQoaAZHQIsnt2HLzPNoB03oA2gIR0CrRKpL/S6UdX2UKGgGR0CM6n1q33HraAdN6ANoCEdAq0YPpMYdhnV9lChoBkdAjhvJvYODrmgHTegDaAhHQKtMFxNqQBB1fZQoaAZHQIuOCTOgQH1oB03oA2gIR0CrT3kPtlZpdX2UKGgGR0CL1p3t8eCDaAdN6ANoCEdAq1FU14xDcHV9lChoBkdAhcZJTl1bJWgHTegDaAhHQKtTYH58BuJ1fZQoaAZHQI7BlpblijNoB03oA2gIR0CrXBmlZX+3dX2UKGgGR0COeaBDohZAaAdN6ANoCEdAq19xfa6BiHV9lChoBkdAjgMWqT8pC2gHTegDaAhHQKthIzzErG11fZQoaAZHQI211g0CRwJoB03oA2gIR0CrYpjJU5uJdX2UKGgGR0CL5jmMfigkaAdN6ANoCEdAq2iMbHZK4HV9lChoBkdAkJVqVUuL8GgHTegDaAhHQKtr/3Ehq0t1fZQoaAZHQIi9e+XZ5A1oB03oA2gIR0Crba/TspocdX2UKGgGR0CHIRVOsT37aAdN6ANoCEdAq28eVu76HnV9lChoBkdAiBKRnFo+OmgHTegDaAhHQKt4I9eyAx11fZQoaAZHQIoMaTOgQH1oB03oA2gIR0CrfBqSX+l1dX2UKGgGR0CJqZj/dZaFaAdN6ANoCEdAq33ifWcz7HV9lChoBkdAkBQs4ku6E2gHTegDaAhHQKt/R8Ti84B1fZQoaAZHQItng8GLUCtoB03oA2gIR0CrhTj5KvmpdX2UKGgGR0CERIk+otL+aAdN6ANoCEdAq4iYuIyj6HV9lChoBkdAiYLHzg/C7GgHTegDaAhHQKuKOmuTzNF1fZQoaAZHQIZWtP3ztkZoB03oA2gIR0Cri6Eiliz+dX2UKGgGR0CPkTjBEa2naAdN6ANoCEdAq5OYWN3np3V9lChoBkdAjE36NdZ7omgHTegDaAhHQKuY6RnOB191fZQoaAZHQI7SmG/N7jVoB03oA2gIR0Crmo3rD63zdX2UKGgGR0CIYJMwDeTFaAdN6ANoCEdAq5wAeNkvsnV9lChoBkdAjE+kEcKgI2gHTegDaAhHQKuh5YqXnhd1fZQoaAZHQIt7zMPjGT9oB03oA2gIR0CrpVCblRxcdX2UKGgGR0CL1m5Lh73PaAdN6ANoCEdAq6b2MIeHSHV9lChoBkdAhKwzisGPgmgHTegDaAhHQKuoYWP91lp1fZQoaAZHQJAGQy9EkSpoB03oA2gIR0Crrwec6NlzdX2UKGgGR0CLZnnBciW3aAdN6ANoCEdAq7Q1enhsInV9lChoBkdAkMCkfHPu5WgHTegDaAhHQKu2zkrf+CN1fZQoaAZHQIPiU6vJRwZoB03oA2gIR0CruF8ox59mdX2UKGgGR0CMdxaYeDFqaAdN6ANoCEdAq7575CWu5nV9lChoBkdAkM0YVM23rmgHTegDaAhHQKvB1I0ZWJd1fZQoaAZHQItmYGfPHDJoB03oA2gIR0Crw3h6KLsKdX2UKGgGR0CROUY5ksjFaAdN6ANoCEdAq8Tgd2gWanV9lChoBkdAknRc89wFT2gHTegDaAhHQKvKxNxlxwR1fZQoaAZHQJId9NZeRgZoB03oA2gIR0Crz4vmHP/rdX2UKGgGR0CIzpk4m1IAaAdN6ANoCEdAq9Ii8tf5UXV9lChoBkdAjidyGi5/b2gHTegDaAhHQKvUXAuZkTZ1fZQoaAZHQJOwqoQ4CIVoB03oA2gIR0Cr2sEl3QlbdX2UKGgGR0CSIBpXp4bCaAdN6ANoCEdAq94u9vjwQXV9lChoBkdAkbf+6ErXlWgHTegDaAhHQKvf4G/N7jV1fZQoaAZHQJKKKtzS1E5oB03oA2gIR0Cr4U6Yu01JdX2UKGgGR0CP++E3bVSXaAdN6ANoCEdAq+dWOS4e93V9lChoBkdAgnPsuez2OGgHTegDaAhHQKvrU+8oQWh1fZQoaAZHQIyD5tcfNiZoB03oA2gIR0Cr7b8vmHQAdX2UKGgGR0CJNO7BfrrxaAdN6ANoCEdAq+/0TzundnV9lChoBkdAkBqoLCvX9WgHTegDaAhHQKv3ntALRa51fZQoaAZHQImVjpPhybRoB03oA2gIR0Cr+xKZUkv9dX2UKGgGR0CMbz+so2GZaAdN6ANoCEdAq/y1eF+NLnV9lChoBkdAjBSAxi5NGmgHTegDaAhHQKv+Gw9JSR91fZQoaAZHQI+BMk8ifQNoB03oA2gIR0CsBCvikwevdX2UKGgGR0CFhvV94NZvaAdN6ANoCEdArAeWW0JF9nV9lChoBkdAkSNiy+pOvmgHTegDaAhHQKwJoTRplBh1fZQoaAZHQJH7lsEaESNoB03oA2gIR0CsC7CnpB5YdX2UKGgGR0COo5tmcvugaAdN6ANoCEdArBRZE6T4cnV9lChoBkdAkKLWTkhib2gHTegDaAhHQKwXwzZYgaF1fZQoaAZHQI/eJXlr/KhoB03oA2gIR0CsGXOVHFxXdX2UKGgGR0CIuxXRw6yTaAdN6ANoCEdArBri9wm3OXV9lChoBkdAi7z5YgaFVWgHTegDaAhHQKwg9FtKqXF1fZQoaAZHQIRiYi7kGRpoB03oA2gIR0CsJF8nE2pAdX2UKGgGR0CHAvhMrVe8aAdN6ANoCEdArCYFDhLoOnV9lChoBkdAiE8iJO32EmgHTegDaAhHQKwno3eenQ91fZQoaAZHQImPnVXmvGJoB03oA2gIR0CsMKFOwgTzdX2UKGgGR0CSDLeqJdjYaAdN6ANoCEdArDRhIDoyK3V9lChoBkdAj82jLB9Cu2gHTegDaAhHQKw2AR3eN1h1fZQoaAZHQIrL5G8VYZFoB03oA2gIR0CsN1tF8XvZdX2UKGgGR0CMhjE+gUUPaAdN6ANoCEdArD05+pfhM3V9lChoBkdAkWApGFzuGGgHTegDaAhHQKxAmlXzUZx1fZQoaAZHQJDFpGus90RoB03oA2gIR0CsQjxOUMXrdX2UKGgGR0CJ9YXpGFzuaAdN6ANoCEdArEOcn7YTTXV9lChoBkdAkGr+cDr7f2gHTegDaAhHQKxLWlnh86V1fZQoaAZHQIyI2nAIpphoB03oA2gIR0CsUFoBRyfddX2UKGgGR0CRWEcp9ZzQaAdN6ANoCEdArFIKNhmXgXV9lChoBkdAj+d8Muvll2gHTegDaAhHQKxTamJFb3Z1fZQoaAZHQIsUTkdV/+doB03oA2gIR0CsWV3okiUxdX2UKGgGR0CQyj40Mw10aAdN6ANoCEdArFzY482aUnV9lChoBkdAk5Y29lEqlWgHTegDaAhHQKxeeRbr1NB1fZQoaAZHQJK5Sc0+C9RoB03oA2gIR0CsX94/Vy3kdX2UKGgGR0CSb2uXeFcqaAdN6ANoCEdArGaCfDk2gnV9lChoBkdAkJQMdcSoO2gHTegDaAhHQKxrqk4WDYh1fZQoaAZHQIlotfb9If9oB03oA2gIR0Csbk44Ia99dX2UKGgGR0CLuWOf/WDpaAdN6ANoCEdArG/CamXPaHV9lChoBkdAjlyzQE6kqWgHTegDaAhHQKx1zwjt5Ut1fZQoaAZHQIaE8Rg7YChoB03oA2gIR0CseUQ1R+BpdX2UKGgGR0CJ554mkWRBaAdN6ANoCEdArHrltCRfW3V9lChoBkdAhn3rQXyiEmgHTegDaAhHQKx8V8IAwPB1fZQoaAZHQIn6mU+s5n1oB03oA2gIR0CsgmOhTOxCdX2UKGgGR0CJ8vGQSzw+aAdN6ANoCEdArIeVdZ7ojnV9lChoBkdAkHH9DQZ4wGgHTegDaAhHQKyKNu0CzTp1fZQoaAZHQIrum4d6syVoB03oA2gIR0CsjHLRSgoPdX2UKGgGR0CRNyXlr/KhaAdN6ANoCEdArJK2bXpW3nVlLg=="
63
+ },
64
+ "ep_success_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
67
+ },
68
+ "_n_updates": 62500,
69
+ "n_steps": 8,
70
+ "gamma": 0.99,
71
+ "gae_lambda": 0.9,
72
+ "ent_coef": 0.0,
73
+ "vf_coef": 0.4,
74
+ "max_grad_norm": 0.5,
75
+ "normalize_advantage": false,
76
+ "observation_space": {
77
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
78
+ ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=",
79
+ "dtype": "float32",
80
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
81
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
82
+ "_shape": [
83
+ 28
84
+ ],
85
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
86
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
87
+ "low_repr": "-inf",
88
+ "high_repr": "inf",
89
+ "_np_random": null
90
+ },
91
+ "action_space": {
92
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
93
+ ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu",
94
+ "dtype": "float32",
95
+ "bounded_below": "[ True True True True True True True True]",
96
+ "bounded_above": "[ True True True True True True True True]",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "low_repr": "-1.0",
103
+ "high_repr": "1.0",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4,
107
+ "lr_schedule": {
108
+ ":type:": "<class 'function'>",
109
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
110
+ }
111
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86acc481b86d34115ec4168e9da0ce94038477a759750a321ddfcff2cba7206d
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72c577d3f0e99055b0d369d5f03ac20cc9f75422e3b1757ea49606b61fcac543
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78f4e56129e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78f4e5612a70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78f4e5612b00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78f4e5612b90>", "_build": "<function ActorCriticPolicy._build at 0x78f4e5612c20>", "forward": "<function ActorCriticPolicy.forward at 0x78f4e5612cb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78f4e5612d40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78f4e5612dd0>", "_predict": "<function ActorCriticPolicy._predict at 0x78f4e5612e60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78f4e5612ef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78f4e5612f80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78f4e5613010>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78f4e5619280>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689276998554462976, "learning_rate": 0.00096, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAjxN7/U1NY/2JuLvjW4SL0lTgE/tH+IPzLw9r7TF3q+srkkPzOtIz93iXS/4tUawDVXxL7u7o4/AO1iPyss5DzMVVc/L4UDQA8FaD6E7QvA6OOcPjiYtD8QfmU+VvQQPRh4r789r+I+b6O/PhkqLD8SHQc/Rej6Pku7FT+DS6Q/TdWcPyRppr9Yvh2/8GYmv1vLcT8ti+w+RegBv2Sp8T/LyZe9yjXRPo6FZT9rtze/BaIjP+g3lL6Ceqi+ICAUPwCU9T6Nhcq/WFvVP6bQ0T4YeK+/po0QwG+jvz4ZKiw/pM/kPsCMGz9jCA8/XsgMP3ANpD8cqB+/qZKTvtdtcL+1/YY/h4TEu8/6Ib/eb40+ijJdP22KAz+ubDU/1KIwPzRfCr++af8+zW/ePks+Hj5iJPg+i2yJvtwHzz/0KoI+GHivv6aNEMBvo78+GSosP6glFT8kVbg/2drYPPU/sD/Zp48/jMLvP7NGi7/72r6/FIqEvqUYaj9+BUw/oLCkPz7Xnb9rXNE+znFgP22W7LxVTQY/yK93v9ySn742sKg/sKfyPhDM670ZTWW/ZGu6PsC+Oj89r+I+b6O/PmRUvr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADzOGS1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9mOYvQAAAADLd/a/AAAAAI3Yir0AAAAAj8XgPwAAAACkoNS9AAAAALwU8D8AAAAAhyR6vQAAAAC8Euq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/H99tQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDeqwD0AAAAAJlPnvwAAAAA+xYW9AAAAAOO07j8AAAAAd2kHPgAAAACOpPY/AAAAAF8RKTwAAAAALEDdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOSlljYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBUDwu9AAAAAGLS6b8AAAAA5DmRvAAAAABD3eg/AAAAAHQtTD0AAAAA/Y3sPwAAAAB3RAm+AAAAAF52478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABbt1C2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAMw74vQAAAABmqNm/AAAAAC8hLrwAAAAAXgT/PwAAAADmowm+AAAAAF1g7D8AAAAAL5/aPQAAAACxnt2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIaqlRekYXSMAWyUTegDjAF0lEdAqzNfrhR64XV9lChoBkdAkmv0EX+ERWgHTegDaAhHQKs1tqfvnbJ1fZQoaAZHQIz56vJRwZRoB03oA2gIR0CrN93/xUeddX2UKGgGR0CQ0QfvF3pwaAdN6ANoCEdAqz+G9pRGdHV9lChoBkdAiraUqpcX32gHTegDaAhHQKtDD3fQ8fV1fZQoaAZHQIsnt2HLzPNoB03oA2gIR0CrRKpL/S6UdX2UKGgGR0CM6n1q33HraAdN6ANoCEdAq0YPpMYdhnV9lChoBkdAjhvJvYODrmgHTegDaAhHQKtMFxNqQBB1fZQoaAZHQIuOCTOgQH1oB03oA2gIR0CrT3kPtlZpdX2UKGgGR0CL1p3t8eCDaAdN6ANoCEdAq1FU14xDcHV9lChoBkdAhcZJTl1bJWgHTegDaAhHQKtTYH58BuJ1fZQoaAZHQI7BlpblijNoB03oA2gIR0CrXBmlZX+3dX2UKGgGR0COeaBDohZAaAdN6ANoCEdAq19xfa6BiHV9lChoBkdAjgMWqT8pC2gHTegDaAhHQKthIzzErG11fZQoaAZHQI211g0CRwJoB03oA2gIR0CrYpjJU5uJdX2UKGgGR0CL5jmMfigkaAdN6ANoCEdAq2iMbHZK4HV9lChoBkdAkJVqVUuL8GgHTegDaAhHQKtr/3Ehq0t1fZQoaAZHQIi9e+XZ5A1oB03oA2gIR0Crba/TspocdX2UKGgGR0CHIRVOsT37aAdN6ANoCEdAq28eVu76HnV9lChoBkdAiBKRnFo+OmgHTegDaAhHQKt4I9eyAx11fZQoaAZHQIoMaTOgQH1oB03oA2gIR0CrfBqSX+l1dX2UKGgGR0CJqZj/dZaFaAdN6ANoCEdAq33ifWcz7HV9lChoBkdAkBQs4ku6E2gHTegDaAhHQKt/R8Ti84B1fZQoaAZHQItng8GLUCtoB03oA2gIR0CrhTj5KvmpdX2UKGgGR0CERIk+otL+aAdN6ANoCEdAq4iYuIyj6HV9lChoBkdAiYLHzg/C7GgHTegDaAhHQKuKOmuTzNF1fZQoaAZHQIZWtP3ztkZoB03oA2gIR0Cri6Eiliz+dX2UKGgGR0CPkTjBEa2naAdN6ANoCEdAq5OYWN3np3V9lChoBkdAjE36NdZ7omgHTegDaAhHQKuY6RnOB191fZQoaAZHQI7SmG/N7jVoB03oA2gIR0Crmo3rD63zdX2UKGgGR0CIYJMwDeTFaAdN6ANoCEdAq5wAeNkvsnV9lChoBkdAjE+kEcKgI2gHTegDaAhHQKuh5YqXnhd1fZQoaAZHQIt7zMPjGT9oB03oA2gIR0CrpVCblRxcdX2UKGgGR0CL1m5Lh73PaAdN6ANoCEdAq6b2MIeHSHV9lChoBkdAhKwzisGPgmgHTegDaAhHQKuoYWP91lp1fZQoaAZHQJAGQy9EkSpoB03oA2gIR0Crrwec6NlzdX2UKGgGR0CLZnnBciW3aAdN6ANoCEdAq7Q1enhsInV9lChoBkdAkMCkfHPu5WgHTegDaAhHQKu2zkrf+CN1fZQoaAZHQIPiU6vJRwZoB03oA2gIR0CruF8ox59mdX2UKGgGR0CMdxaYeDFqaAdN6ANoCEdAq7575CWu5nV9lChoBkdAkM0YVM23rmgHTegDaAhHQKvB1I0ZWJd1fZQoaAZHQItmYGfPHDJoB03oA2gIR0Crw3h6KLsKdX2UKGgGR0CROUY5ksjFaAdN6ANoCEdAq8Tgd2gWanV9lChoBkdAknRc89wFT2gHTegDaAhHQKvKxNxlxwR1fZQoaAZHQJId9NZeRgZoB03oA2gIR0Crz4vmHP/rdX2UKGgGR0CIzpk4m1IAaAdN6ANoCEdAq9Ii8tf5UXV9lChoBkdAjidyGi5/b2gHTegDaAhHQKvUXAuZkTZ1fZQoaAZHQJOwqoQ4CIVoB03oA2gIR0Cr2sEl3QlbdX2UKGgGR0CSIBpXp4bCaAdN6ANoCEdAq94u9vjwQXV9lChoBkdAkbf+6ErXlWgHTegDaAhHQKvf4G/N7jV1fZQoaAZHQJKKKtzS1E5oB03oA2gIR0Cr4U6Yu01JdX2UKGgGR0CP++E3bVSXaAdN6ANoCEdAq+dWOS4e93V9lChoBkdAgnPsuez2OGgHTegDaAhHQKvrU+8oQWh1fZQoaAZHQIyD5tcfNiZoB03oA2gIR0Cr7b8vmHQAdX2UKGgGR0CJNO7BfrrxaAdN6ANoCEdAq+/0TzundnV9lChoBkdAkBqoLCvX9WgHTegDaAhHQKv3ntALRa51fZQoaAZHQImVjpPhybRoB03oA2gIR0Cr+xKZUkv9dX2UKGgGR0CMbz+so2GZaAdN6ANoCEdAq/y1eF+NLnV9lChoBkdAjBSAxi5NGmgHTegDaAhHQKv+Gw9JSR91fZQoaAZHQI+BMk8ifQNoB03oA2gIR0CsBCvikwevdX2UKGgGR0CFhvV94NZvaAdN6ANoCEdArAeWW0JF9nV9lChoBkdAkSNiy+pOvmgHTegDaAhHQKwJoTRplBh1fZQoaAZHQJH7lsEaESNoB03oA2gIR0CsC7CnpB5YdX2UKGgGR0COo5tmcvugaAdN6ANoCEdArBRZE6T4cnV9lChoBkdAkKLWTkhib2gHTegDaAhHQKwXwzZYgaF1fZQoaAZHQI/eJXlr/KhoB03oA2gIR0CsGXOVHFxXdX2UKGgGR0CIuxXRw6yTaAdN6ANoCEdArBri9wm3OXV9lChoBkdAi7z5YgaFVWgHTegDaAhHQKwg9FtKqXF1fZQoaAZHQIRiYi7kGRpoB03oA2gIR0CsJF8nE2pAdX2UKGgGR0CHAvhMrVe8aAdN6ANoCEdArCYFDhLoOnV9lChoBkdAiE8iJO32EmgHTegDaAhHQKwno3eenQ91fZQoaAZHQImPnVXmvGJoB03oA2gIR0CsMKFOwgTzdX2UKGgGR0CSDLeqJdjYaAdN6ANoCEdArDRhIDoyK3V9lChoBkdAj82jLB9Cu2gHTegDaAhHQKw2AR3eN1h1fZQoaAZHQIrL5G8VYZFoB03oA2gIR0CsN1tF8XvZdX2UKGgGR0CMhjE+gUUPaAdN6ANoCEdArD05+pfhM3V9lChoBkdAkWApGFzuGGgHTegDaAhHQKxAmlXzUZx1fZQoaAZHQJDFpGus90RoB03oA2gIR0CsQjxOUMXrdX2UKGgGR0CJ9YXpGFzuaAdN6ANoCEdArEOcn7YTTXV9lChoBkdAkGr+cDr7f2gHTegDaAhHQKxLWlnh86V1fZQoaAZHQIyI2nAIpphoB03oA2gIR0CsUFoBRyfddX2UKGgGR0CRWEcp9ZzQaAdN6ANoCEdArFIKNhmXgXV9lChoBkdAj+d8Muvll2gHTegDaAhHQKxTamJFb3Z1fZQoaAZHQIsUTkdV/+doB03oA2gIR0CsWV3okiUxdX2UKGgGR0CQyj40Mw10aAdN6ANoCEdArFzY482aUnV9lChoBkdAk5Y29lEqlWgHTegDaAhHQKxeeRbr1NB1fZQoaAZHQJK5Sc0+C9RoB03oA2gIR0CsX94/Vy3kdX2UKGgGR0CSb2uXeFcqaAdN6ANoCEdArGaCfDk2gnV9lChoBkdAkJQMdcSoO2gHTegDaAhHQKxrqk4WDYh1fZQoaAZHQIlotfb9If9oB03oA2gIR0Csbk44Ia99dX2UKGgGR0CLuWOf/WDpaAdN6ANoCEdArG/CamXPaHV9lChoBkdAjlyzQE6kqWgHTegDaAhHQKx1zwjt5Ut1fZQoaAZHQIaE8Rg7YChoB03oA2gIR0CseUQ1R+BpdX2UKGgGR0CJ554mkWRBaAdN6ANoCEdArHrltCRfW3V9lChoBkdAhn3rQXyiEmgHTegDaAhHQKx8V8IAwPB1fZQoaAZHQIn6mU+s5n1oB03oA2gIR0CsgmOhTOxCdX2UKGgGR0CJ8vGQSzw+aAdN6ANoCEdArIeVdZ7ojnV9lChoBkdAkHH9DQZ4wGgHTegDaAhHQKyKNu0CzTp1fZQoaAZHQIrum4d6syVoB03oA2gIR0CsjHLRSgoPdX2UKGgGR0CRNyXlr/KhaAdN6ANoCEdArJK2bXpW3nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1134.2285248707062, "std_reward": 127.10930265473132, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-13T20:48:54.702593"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5940f4d33f6d925a6b6f0e5012c1fd68270b647e08bef2e136c568478d22e46
3
+ size 2376