lovemefan's picture
Upload 14 files
ec97ce5
import logging
import os.path
from pathlib import Path
from typing import Tuple, Union
import numpy as np
from cttpunctuator.src.utils.OrtInferSession import (ONNXRuntimeError,
OrtInferSession)
from cttpunctuator.src.utils.text_post_process import (TokenIDConverter,
code_mix_split_words,
read_yaml,
split_to_mini_sentence)
class CT_Transformer:
"""
Author: Speech Lab, Alibaba Group, China
CT-Transformer: Controllable time-delay transformer
for real-time punctuation prediction and disfluency detection
https://arxiv.org/pdf/2003.01309.pdf
"""
def __init__(
self,
model_dir: Union[str, Path] = None,
batch_size: int = 1,
device_id: Union[str, int] = "-1",
quantize: bool = False,
intra_op_num_threads: int = 4,
):
model_dir = model_dir or os.path.join(os.path.dirname(__file__), "onnx")
if model_dir is None or not Path(model_dir).exists():
raise FileNotFoundError(f"{model_dir} does not exist.")
model_file = os.path.join(model_dir, "punc.onnx")
if quantize:
model_file = os.path.join(model_dir, "model_quant.onnx")
config_file = os.path.join(model_dir, "punc.yaml")
config = read_yaml(config_file)
self.converter = TokenIDConverter(config["token_list"])
self.ort_infer = OrtInferSession(
model_file, device_id, intra_op_num_threads=intra_op_num_threads
)
self.batch_size = 1
self.punc_list = config["punc_list"]
self.period = 0
for i in range(len(self.punc_list)):
if self.punc_list[i] == ",":
self.punc_list[i] = ","
elif self.punc_list[i] == "?":
self.punc_list[i] = "?"
elif self.punc_list[i] == "。":
self.period = i
def __call__(self, text: Union[list, str], split_size=20):
split_text = code_mix_split_words(text)
split_text_id = self.converter.tokens2ids(split_text)
mini_sentences = split_to_mini_sentence(split_text, split_size)
mini_sentences_id = split_to_mini_sentence(split_text_id, split_size)
assert len(mini_sentences) == len(mini_sentences_id)
cache_sent = []
cache_sent_id = []
new_mini_sentence = ""
new_mini_sentence_punc = []
cache_pop_trigger_limit = 200
for mini_sentence_i in range(len(mini_sentences)):
mini_sentence = mini_sentences[mini_sentence_i]
mini_sentence_id = mini_sentences_id[mini_sentence_i]
mini_sentence = cache_sent + mini_sentence
mini_sentence_id = np.array(cache_sent_id + mini_sentence_id, dtype="int64")
data = {
"text": mini_sentence_id[None, :],
"text_lengths": np.array([len(mini_sentence_id)], dtype="int32"),
}
try:
outputs = self.infer(data["text"], data["text_lengths"])
y = outputs[0]
punctuations = np.argmax(y, axis=-1)[0]
assert punctuations.size == len(mini_sentence)
except ONNXRuntimeError:
logging.warning("error")
# Search for the last Period/QuestionMark as cache
if mini_sentence_i < len(mini_sentences) - 1:
sentenceEnd = -1
last_comma_index = -1
for i in range(len(punctuations) - 2, 1, -1):
if (
self.punc_list[punctuations[i]] == "。"
or self.punc_list[punctuations[i]] == "?"
):
sentenceEnd = i
break
if last_comma_index < 0 and self.punc_list[punctuations[i]] == ",":
last_comma_index = i
if (
sentenceEnd < 0
and len(mini_sentence) > cache_pop_trigger_limit
and last_comma_index >= 0
):
# The sentence it too long, cut off at a comma.
sentenceEnd = last_comma_index
punctuations[sentenceEnd] = self.period
cache_sent = mini_sentence[sentenceEnd + 1 :]
cache_sent_id = mini_sentence_id[sentenceEnd + 1 :].tolist()
mini_sentence = mini_sentence[0 : sentenceEnd + 1]
punctuations = punctuations[0 : sentenceEnd + 1]
new_mini_sentence_punc += [int(x) for x in punctuations]
words_with_punc = []
for i in range(len(mini_sentence)):
if i > 0:
if (
len(mini_sentence[i][0].encode()) == 1
and len(mini_sentence[i - 1][0].encode()) == 1
):
mini_sentence[i] = " " + mini_sentence[i]
words_with_punc.append(mini_sentence[i])
if self.punc_list[punctuations[i]] != "_":
words_with_punc.append(self.punc_list[punctuations[i]])
new_mini_sentence += "".join(words_with_punc)
# Add Period for the end of the sentence
new_mini_sentence_out = new_mini_sentence
new_mini_sentence_punc_out = new_mini_sentence_punc
if mini_sentence_i == len(mini_sentences) - 1:
if new_mini_sentence[-1] == "," or new_mini_sentence[-1] == "、":
new_mini_sentence_out = new_mini_sentence[:-1] + "。"
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [
self.period
]
elif new_mini_sentence[-1] != "。" and new_mini_sentence[-1] != "?":
new_mini_sentence_out = new_mini_sentence + "。"
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [
self.period
]
return new_mini_sentence_out, new_mini_sentence_punc_out
def infer(
self, feats: np.ndarray, feats_len: np.ndarray
) -> Tuple[np.ndarray, np.ndarray]:
outputs = self.ort_infer([feats, feats_len])
return outputs
class CT_Transformer_VadRealtime(CT_Transformer):
"""
Author: Speech Lab, Alibaba Group, China
CT-Transformer: Controllable time-delay transformer for
real-time punctuation prediction and disfluency detection
https://arxiv.org/pdf/2003.01309.pdf
"""
def __init__(
self,
model_dir: Union[str, Path] = None,
batch_size: int = 1,
device_id: Union[str, int] = "-1",
quantize: bool = False,
intra_op_num_threads: int = 4,
):
super(CT_Transformer_VadRealtime, self).__init__(
model_dir, batch_size, device_id, quantize, intra_op_num_threads
)
def __call__(self, text: str, param_dict: map, split_size=20):
cache_key = "cache"
assert cache_key in param_dict
cache = param_dict[cache_key]
if cache is not None and len(cache) > 0:
precache = "".join(cache)
else:
precache = ""
cache = []
full_text = precache + text
split_text = code_mix_split_words(full_text)
split_text_id = self.converter.tokens2ids(split_text)
mini_sentences = split_to_mini_sentence(split_text, split_size)
mini_sentences_id = split_to_mini_sentence(split_text_id, split_size)
new_mini_sentence_punc = []
assert len(mini_sentences) == len(mini_sentences_id)
cache_sent = []
cache_sent_id = np.array([], dtype="int32")
sentence_punc_list = []
sentence_words_list = []
cache_pop_trigger_limit = 200
skip_num = 0
for mini_sentence_i in range(len(mini_sentences)):
mini_sentence = mini_sentences[mini_sentence_i]
mini_sentence_id = mini_sentences_id[mini_sentence_i]
mini_sentence = cache_sent + mini_sentence
mini_sentence_id = np.concatenate((cache_sent_id, mini_sentence_id), axis=0)
text_length = len(mini_sentence_id)
data = {
"input": mini_sentence_id[None, :],
"text_lengths": np.array([text_length], dtype="int32"),
"vad_mask": self.vad_mask(text_length, len(cache))[
None, None, :, :
].astype(np.float32),
"sub_masks": np.tril(
np.ones((text_length, text_length), dtype=np.float32)
)[None, None, :, :].astype(np.float32),
}
try:
outputs = self.infer(
data["input"],
data["text_lengths"],
data["vad_mask"],
data["sub_masks"],
)
y = outputs[0]
punctuations = np.argmax(y, axis=-1)[0]
assert punctuations.size == len(mini_sentence)
except ONNXRuntimeError:
logging.warning("error")
# Search for the last Period/QuestionMark as cache
if mini_sentence_i < len(mini_sentences) - 1:
sentenceEnd = -1
last_comma_index = -1
for i in range(len(punctuations) - 2, 1, -1):
if (
self.punc_list[punctuations[i]] == "。"
or self.punc_list[punctuations[i]] == "?"
):
sentenceEnd = i
break
if last_comma_index < 0 and self.punc_list[punctuations[i]] == ",":
last_comma_index = i
if (
sentenceEnd < 0
and len(mini_sentence) > cache_pop_trigger_limit
and last_comma_index >= 0
):
# The sentence it too long, cut off at a comma.
sentenceEnd = last_comma_index
punctuations[sentenceEnd] = self.period
cache_sent = mini_sentence[sentenceEnd + 1 :]
cache_sent_id = mini_sentence_id[sentenceEnd + 1 :]
mini_sentence = mini_sentence[0 : sentenceEnd + 1]
punctuations = punctuations[0 : sentenceEnd + 1]
punctuations_np = [int(x) for x in punctuations]
new_mini_sentence_punc += punctuations_np
sentence_punc_list += [self.punc_list[int(x)] for x in punctuations_np]
sentence_words_list += mini_sentence
assert len(sentence_punc_list) == len(sentence_words_list)
words_with_punc = []
sentence_punc_list_out = []
for i in range(0, len(sentence_words_list)):
if i > 0:
if (
len(sentence_words_list[i][0].encode()) == 1
and len(sentence_words_list[i - 1][-1].encode()) == 1
):
sentence_words_list[i] = " " + sentence_words_list[i]
if skip_num < len(cache):
skip_num += 1
else:
words_with_punc.append(sentence_words_list[i])
if skip_num >= len(cache):
sentence_punc_list_out.append(sentence_punc_list[i])
if sentence_punc_list[i] != "_":
words_with_punc.append(sentence_punc_list[i])
sentence_out = "".join(words_with_punc)
sentenceEnd = -1
for i in range(len(sentence_punc_list) - 2, 1, -1):
if sentence_punc_list[i] == "。" or sentence_punc_list[i] == "?":
sentenceEnd = i
break
cache_out = sentence_words_list[sentenceEnd + 1 :]
if sentence_out[-1] in self.punc_list:
sentence_out = sentence_out[:-1]
sentence_punc_list_out[-1] = "_"
param_dict[cache_key] = cache_out
return sentence_out, sentence_punc_list_out, cache_out
def vad_mask(self, size, vad_pos, dtype=np.bool_):
"""Create mask for decoder self-attention.
:param int size: size of mask
:param int vad_pos: index of vad index
:param torch.dtype dtype: result dtype
:rtype: torch.Tensor (B, Lmax, Lmax)
"""
ret = np.ones((size, size), dtype=dtype)
if vad_pos <= 0 or vad_pos >= size:
return ret
sub_corner = np.zeros((vad_pos - 1, size - vad_pos), dtype=dtype)
ret[0 : vad_pos - 1, vad_pos:] = sub_corner
return ret
def infer(
self,
feats: np.ndarray,
feats_len: np.ndarray,
vad_mask: np.ndarray,
sub_masks: np.ndarray,
) -> Tuple[np.ndarray, np.ndarray]:
outputs = self.ort_infer([feats, feats_len, vad_mask, sub_masks])
return outputs