encodecmae-large / config.gin
lpepino's picture
Upload config.gin with huggingface_hub
30e7d18
NUM_ENCODEC_TARGETS=8
NUM_TOTAL_TARGETS=8
NUM_TARGET_TOKENS=1024
MASK_AMOUNT=150
MASK_GAP_SIZE=15
MASK_PROP=0.5
MODEL_DIM=1024
NUM_ENCODER_LAYERS=20
NUM_ENCODER_HEADS=12
NUM_DECODER_LAYERS=2
NUM_DECODER_HEADS=12
MASKED_LOSS_WEIGHT=0.9
get_model.model[email protected]
models.EncodecMAE:
wav_encoder = @models.encodecmae.encoders.EncodecEncoder
target_encoder = @models.encodecmae.targets.EncodecQuantizer
masker = @models.encodecmae.masking.TimeGapMask
visible_encoder = @encoder/models.transformers.TransformerEncoder
positional_encoder = @models.transformers.SinusoidalPositionalEmbeddings
decoder = @decoder/models.transformers.TransformerEncoder
head = @models.encodecmae.heads.FrameLevelClassificationHead
optimizer[email protected]
lr_scheduler=None
masked_weight=%MASKED_LOSS_WEIGHT
quantizer_weights=[0.22407463, 0.1759858 , 0.14499009, 0.12150037, 0.10315603, 0.08831368, 0.07608274, 0.06589669]
torch.optim.AdamW:
lr=%PRETRAIN_MAX_LR
betas=(0.9,0.95)
weight_decay=0.05
models.encodecmae.targets.EncodecQuantizer:
n = %NUM_ENCODEC_TARGETS
models.encodecmae.masking.TimeGapMask:
mask_amount = %MASK_AMOUNT
gap_size = %MASK_GAP_SIZE
mask_prop = %MASK_PROP
encoder/models.transformers.TransformerEncoder:
model_dim=%MODEL_DIM
num_layers=%NUM_ENCODER_LAYERS
attention_layer=@encoder/models.transformers.MultiHeadAttention
compile=True
encoder/models.transformers.MultiHeadAttention:
model_dim=%MODEL_DIM
num_heads=%NUM_ENCODER_HEADS
decoder/models.transformers.TransformerEncoder:
model_dim=%MODEL_DIM
num_layers=%NUM_DECODER_LAYERS
attention_layer=@decoder/models.transformers.MultiHeadAttention
compile=True
decoder/models.transformers.MultiHeadAttention:
model_dim=%MODEL_DIM
num_heads=%NUM_DECODER_HEADS
models.transformers.SinusoidalPositionalEmbeddings.embedding_dim = %MODEL_DIM
models.encodecmae.heads.FrameLevelClassificationHead:
model_dim=%MODEL_DIM
num_tokens=%NUM_TARGET_TOKENS
num_streams=%NUM_TOTAL_TARGETS