File size: 2,095 Bytes
e11479d 2772d1f e11479d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: togethercomputer/evo-1-8k-base
model-index:
- name: lora_evo_ta_all_layers_17
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lora_evo_ta_all_layers_17
This model is a fine-tuned version of [togethercomputer/evo-1-8k-base](https://huggingface.co/togethercomputer/evo-1-8k-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5577
## Model description
Trained on single ID token 5K dataset filtered to 10k sequences (30% for test data = 3000)
lora_alpha = 64 <--------------
lora_dropout = 0.1
lora_r = 128
epochs = 3
learning rate = 3e-4
warmup_steps=500
gradient_accumulation_steps = 1
train_batch = 2
eval_batch = 2
ALL Linear layers
Changed ' token to > <--------------
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 2.7754 | 0.3749 | 1312 | 2.6704 |
| 2.6257 | 0.7497 | 2624 | 2.6140 |
| 2.576 | 1.1246 | 3936 | 2.5976 |
| 2.5475 | 1.4994 | 5248 | 2.5839 |
| 2.5424 | 1.8743 | 6560 | 2.5722 |
| 2.498 | 2.2491 | 7872 | 2.5708 |
| 2.4993 | 2.624 | 9184 | 2.5647 |
| 2.4939 | 2.9989 | 10496 | 2.5577 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |