--- datasets: - lst20 language: - th widget: - text: วัน ที่ _ 12 _ มีนาคม นี้ _ ฉัน จะ ไป เที่ยว วัดพระแก้ว _ ที่ กรุงเทพ library_name: transformers --- # HoogBERTa This repository includes the Thai pretrained language representation (HoogBERTa_base) fine-tuned for **Sentence Boundary Classification Task**. # Documentation ## Prerequisite Since we use subword-nmt BPE encoding, input needs to be pre-tokenize using [BEST](https://huggingface.co/datasets/best2009) standard before inputting into HoogBERTa ``` pip install attacut ``` ## Getting Start To initialize the model from hub, use the following commands ```python from transformers import RobertaTokenizerFast, RobertaForTokenClassification from attacut import tokenize import torch tokenizer = RobertaTokenizerFast.from_pretrained("lst-nectec/HoogBERTa-SENTENCE-lst20") model = RobertaForTokenClassification.from_pretrained("lst-nectec/HoogBERTa-SENTENCE-lst20") ``` To do Sentence Boundary Classification, use the following commands ```python from transformers import pipeline nlp = pipeline('token-classification', model=model, tokenizer=tokenizer, aggregation_strategy="none") sentence = "วันที่ 12 มีนาคมนี้ ฉันจะไปเที่ยววัดพระแก้ว ที่กรุงเทพ" all_sent = [] sentences = sentence.split(" ") for sent in sentences: all_sent.append(" ".join(tokenize(sent)).replace("_","[!und:]")) sentence = " _ ".join(all_sent) print(nlp(sentence)) ``` For batch processing, ```python from transformers import pipeline nlp = pipeline('token-classification', model=model, tokenizer=tokenizer, aggregation_strategy="none") sentenceL = ["วันที่ 12 มีนาคมนี้","ฉันจะไปเที่ยววัดพระแก้ว ที่กรุงเทพ"] inputList = [] for sentX in sentenceL: sentences = sentX.split(" ") all_sent = [] for sent in sentences: all_sent.append(" ".join(tokenize(sent)).replace("_","[!und:]")) sentence = " _ ".join(all_sent) inputList.append(sentence) print(nlp(inputList)) ``` # Huggingface Models 1. `HoogBERTaEncoder` - [HoogBERTa](https://huggingface.co/lst-nectec/HoogBERTa): `Feature Extraction` and `Mask Language Modeling` 2. `HoogBERTaMuliTaskTagger`: - [HoogBERTa-NER-lst20](https://huggingface.co/lst-nectec/HoogBERTa-NER-lst20): `Named-entity recognition (NER)` based on LST20 - [HoogBERTa-POS-lst20](https://huggingface.co/lst-nectec/HoogBERTa-POS-lst20): `Part-of-speech tagging (POS)` based on LST20 - [HoogBERTa-SENTENCE-lst20](https://huggingface.co/lst-nectec/HoogBERTa-SENTENCE-lst20): `Clause Boundary Classification` based on LST20 # Citation Please cite as: ``` bibtex @inproceedings{porkaew2021hoogberta, title = {HoogBERTa: Multi-task Sequence Labeling using Thai Pretrained Language Representation}, author = {Peerachet Porkaew, Prachya Boonkwan and Thepchai Supnithi}, booktitle = {The Joint International Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP 2021)}, year = {2021}, address={Online} } ``` Download full-text [PDF](https://drive.google.com/file/d/1hwdyIssR5U_knhPE2HJigrc0rlkqWeLF/view?usp=sharing) Check out the code on [Github](https://github.com/lstnlp/HoogBERTa)