Update README.md
Browse files
README.md
CHANGED
@@ -32,8 +32,8 @@ from transformers import AutoTokenizer, AutoModel
|
|
32 |
from attacut import tokenize
|
33 |
import torch
|
34 |
|
35 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
36 |
-
model = AutoModel.from_pretrained("
|
37 |
```
|
38 |
|
39 |
To extract token features, based on the RoBERTa architecture, use the following commands
|
@@ -84,11 +84,11 @@ with torch.no_grad():
|
|
84 |
|
85 |
# Huggingface Models
|
86 |
1. `HoogBERTaEncoder`
|
87 |
-
- [HoogBERTa](https://huggingface.co/
|
88 |
2. `HoogBERTaMuliTaskTagger`:
|
89 |
-
- [HoogBERTa-NER-lst20](https://huggingface.co/
|
90 |
-
- [HoogBERTa-POS-lst20](https://huggingface.co/
|
91 |
-
- [HoogBERTa-SENTENCE-lst20](https://huggingface.co/
|
92 |
|
93 |
|
94 |
# Citation
|
|
|
32 |
from attacut import tokenize
|
33 |
import torch
|
34 |
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained("lst-nectec/HoogBERTa")
|
36 |
+
model = AutoModel.from_pretrained("lst-nectec/HoogBERTa")
|
37 |
```
|
38 |
|
39 |
To extract token features, based on the RoBERTa architecture, use the following commands
|
|
|
84 |
|
85 |
# Huggingface Models
|
86 |
1. `HoogBERTaEncoder`
|
87 |
+
- [HoogBERTa](https://huggingface.co/lst-nectec/HoogBERTa): `Feature Extraction` and `Mask Language Modeling`
|
88 |
2. `HoogBERTaMuliTaskTagger`:
|
89 |
+
- [HoogBERTa-NER-lst20](https://huggingface.co/lst-nectec/HoogBERTa-NER-lst20): `Named-entity recognition (NER)` based on LST20
|
90 |
+
- [HoogBERTa-POS-lst20](https://huggingface.co/lst-nectec/HoogBERTa-POS-lst20): `Part-of-speech tagging (POS)` based on LST20
|
91 |
+
- [HoogBERTa-SENTENCE-lst20](https://huggingface.co/lst-nectec/HoogBERTa-SENTENCE-lst20): `Clause Boundary Classification` based on LST20
|
92 |
|
93 |
|
94 |
# Citation
|