docs: update readme
Browse files
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
datasets:
|
|
|
4 |
- scb_mt_enth_2020
|
5 |
- oscar
|
6 |
- wikipedia
|
7 |
-
- best2009
|
8 |
language:
|
9 |
- th
|
10 |
library_name: transformers
|
@@ -27,7 +27,8 @@ pip install attacut
|
|
27 |
To initialize the model from hub, use the following commands
|
28 |
```python
|
29 |
from transformers import AutoTokenizer, AutoModel
|
30 |
-
from attacut import
|
|
|
31 |
|
32 |
tokenizer = AutoTokenizer.from_pretrained("new5558/HoogBERTa")
|
33 |
model = AutoModel.from_pretrained("new5558/HoogBERTa")
|
@@ -41,38 +42,39 @@ To annotate POS, NE, and clause boundary, use the following commands
|
|
41 |
To extract token features, based on the RoBERTa architecture, use the following commands
|
42 |
|
43 |
```python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
with torch.no_grad():
|
45 |
-
|
46 |
-
sentence = "วันที่ 12 มีนาคมนี้ ฉันจะไปเที่ยววัดพระแก้ว ที่กรุงเทพ"
|
47 |
-
all_sent = []
|
48 |
-
sentences = sentence.split(" ")
|
49 |
-
for sent in sentences:
|
50 |
-
all_sent.append(" ".join(tokenize(sent)).replace("_","[!und:]"))
|
51 |
-
|
52 |
-
sentence = " _ ".join(all_sent)
|
53 |
-
tokenized_text = tokenizer(sentence, return_tensors = 'pt')
|
54 |
-
token_ids = tokenized_text['input_ids']
|
55 |
-
features = model(**tokenized_text)
|
56 |
```
|
57 |
|
58 |
For batch processing,
|
59 |
|
60 |
```python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
with torch.no_grad():
|
62 |
-
model
|
63 |
-
sentenceL = ["วันที่ 12 มีนาคมนี้","ฉันจะไปเที่ยววัดพระแก้ว ที่กรุงเทพ"]
|
64 |
-
inputList = []
|
65 |
-
for sentX in sentenceL:
|
66 |
-
sentences = sentX.split(" ")
|
67 |
-
all_sent = []
|
68 |
-
for sent in sentences:
|
69 |
-
all_sent.append(" ".join(tokenize(sent)).replace("_","[!und:]"))
|
70 |
-
|
71 |
-
sentence = " _ ".join(all_sent)
|
72 |
-
inputList.append(sentence)
|
73 |
-
tokenized_text = tokenizer(inputList, padding = True, return_tensors = 'pt')
|
74 |
-
token_ids = tokenized_text['input_ids']
|
75 |
-
features = model(**tokenized_text)
|
76 |
```
|
77 |
|
78 |
To use HoogBERTa as an embedding layer, use
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
datasets:
|
4 |
+
- best2009
|
5 |
- scb_mt_enth_2020
|
6 |
- oscar
|
7 |
- wikipedia
|
|
|
8 |
language:
|
9 |
- th
|
10 |
library_name: transformers
|
|
|
27 |
To initialize the model from hub, use the following commands
|
28 |
```python
|
29 |
from transformers import AutoTokenizer, AutoModel
|
30 |
+
from attacut import tokenized
|
31 |
+
import torch
|
32 |
|
33 |
tokenizer = AutoTokenizer.from_pretrained("new5558/HoogBERTa")
|
34 |
model = AutoModel.from_pretrained("new5558/HoogBERTa")
|
|
|
42 |
To extract token features, based on the RoBERTa architecture, use the following commands
|
43 |
|
44 |
```python
|
45 |
+
model.eval()
|
46 |
+
sentence = "วันที่ 12 มีนาคมนี้ ฉันจะไปเที่ยววัดพระแก้ว ที่กรุงเทพ"
|
47 |
+
all_sent = []
|
48 |
+
sentences = sentence.split(" ")
|
49 |
+
for sent in sentences:
|
50 |
+
all_sent.append(" ".join(tokenize(sent)).replace("_","[!und:]"))
|
51 |
+
|
52 |
+
sentence = " _ ".join(all_sent)
|
53 |
+
tokenized_text = tokenizer(sentence, return_tensors = 'pt')
|
54 |
+
token_ids = tokenized_text['input_ids']
|
55 |
+
|
56 |
with torch.no_grad():
|
57 |
+
features = model(**tokenized_text, output_hidden_states = True).hidden_states[-1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
```
|
59 |
|
60 |
For batch processing,
|
61 |
|
62 |
```python
|
63 |
+
model.eval()
|
64 |
+
sentenceL = ["วันที่ 12 มีนาคมนี้","ฉันจะไปเที่ยววัดพระแก้ว ที่กรุงเทพ"]
|
65 |
+
inputList = []
|
66 |
+
for sentX in sentenceL:
|
67 |
+
sentences = sentX.split(" ")
|
68 |
+
all_sent = []
|
69 |
+
for sent in sentences:
|
70 |
+
all_sent.append(" ".join(tokenize(sent)).replace("_","[!und:]"))
|
71 |
+
|
72 |
+
sentence = " _ ".join(all_sent)
|
73 |
+
inputList.append(sentence)
|
74 |
+
tokenized_text = tokenizer(inputList, padding = True, return_tensors = 'pt')
|
75 |
+
token_ids = tokenized_text['input_ids']
|
76 |
with torch.no_grad():
|
77 |
+
features = model(**tokenized_text, output_hidden_states = True).hidden_states[-1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
```
|
79 |
|
80 |
To use HoogBERTa as an embedding layer, use
|