new5558 commited on
Commit
e4b1b40
1 Parent(s): d9a424a

docs: update readme

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - scb_mt_enth_2020
5
+ - oscar
6
+ - best2009
7
+ - wikipedia
8
+ language:
9
+ - th
10
+ library_name: fairseq
11
+ ---
12
+ # HoogBERTa
13
+
14
+ This repository includes the Thai pretrained language representation (HoogBERTa_base) and the fine-tuned model for multitask sequence labeling.
15
+
16
+
17
+
18
+ # Documentation
19
+
20
+ To initialize the model from hub, use the following commands
21
+ ```
22
+ from transformers import AutoTokenizer, AutoModel
23
+
24
+ tokenizer = AutoTokenizer.from_pretrained("new5558/HoogBERTa")
25
+ model = AutoModel.from_pretrained("new5558/HoogBERTa")
26
+ ```
27
+
28
+ To annotate POS, NE and cluase boundary, use the following commands
29
+ ```
30
+
31
+ ```
32
+
33
+ To extract token features, based on the RoBERTa architecture, use the following commands
34
+
35
+ ```python
36
+ with torch.no_grad():
37
+ model.eval()
38
+ sentence = "วันที่ 12 มีนาคมนี้ ฉันจะไปเที่ยววัดพระแก้ว ที่กรุงเทพ"
39
+ all_sent = []
40
+ sentences = sentence.split(" ")
41
+ for sent in sentences:
42
+ all_sent.append(" ".join(tokenize(sent)).replace("_","[!und:]"))
43
+
44
+ sentence = " _ ".join(all_sent)
45
+ token_ids = tokenizer(sentence, return_tensors = 'pt')['input_ids']
46
+ features = model(token_ids)
47
+ ```
48
+
49
+ For batch processing,
50
+
51
+ ```python
52
+ with torch.no_grad():
53
+ model.eval()
54
+ sentenceL = ["วันที่ 12 มีนาคมนี้","ฉันจะไปเที่ยววัดพระแก้ว ที่กรุงเทพ"]
55
+ inputList = []
56
+ for sentX in sentenceL:
57
+ sentences = sentX.split(" ")
58
+ all_sent = []
59
+ for sent in sentences:
60
+ all_sent.append(" ".join(tokenize(sent)).replace("_","[!und:]"))
61
+
62
+ sentence = " _ ".join(all_sent)
63
+ inputList.append(sentence)
64
+ token_ids = tokenizer(inputList, padding = True, return_tensors = 'pt').input_ids
65
+ features = model(token_ids)
66
+ ```
67
+
68
+ To use HoogBERTa as an embedding layer, use
69
+
70
+ ```python
71
+ with torch.no_grad():
72
+ features = model(token_ids) # where token_ids is a tensor with type "long".
73
+ ```
74
+
75
+ # Citation
76
+
77
+ Please cite as:
78
+
79
+ ``` bibtex
80
+ @inproceedings{porkaew2021hoogberta,
81
+ title = {HoogBERTa: Multi-task Sequence Labeling using Thai Pretrained Language Representation},
82
+ author = {Peerachet Porkaew, Prachya Boonkwan and Thepchai Supnithi},
83
+ booktitle = {The Joint International Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP 2021)},
84
+ year = {2021},
85
+ address={Online}
86
+ }
87
+ ```
88
+
89
+ Download full-text [PDF](https://drive.google.com/file/d/1hwdyIssR5U_knhPE2HJigrc0rlkqWeLF/view?usp=sharing)