ltg
/

davda54 commited on
Commit
319aff6
·
verified ·
1 Parent(s): 6825678

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -1,35 +1,16 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
  *.h5 filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
9
  *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
  *.model filter=lfs diff=lfs merge=lfs -text
13
  *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
  *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
  *.pt filter=lfs diff=lfs merge=lfs -text
23
  *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
1
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
2
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
 
 
 
 
4
  *.h5 filter=lfs diff=lfs merge=lfs -text
5
+ *.tflite filter=lfs diff=lfs merge=lfs -text
6
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.ot filter=lfs diff=lfs merge=lfs -text
8
+ *.onnx filter=lfs diff=lfs merge=lfs -text
9
+ *.arrow filter=lfs diff=lfs merge=lfs -text
10
+ *.ftz filter=lfs diff=lfs merge=lfs -text
11
  *.joblib filter=lfs diff=lfs merge=lfs -text
 
 
12
  *.model filter=lfs diff=lfs merge=lfs -text
13
  *.msgpack filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
14
  *.pb filter=lfs diff=lfs merge=lfs -text
 
 
15
  *.pt filter=lfs diff=lfs merge=lfs -text
16
  *.pth filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -1,3 +1,91 @@
1
  ---
 
 
 
 
 
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: en
3
+ tags:
4
+ - deberta
5
+ - fill-mask
6
+ thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
7
  license: mit
8
  ---
9
+
10
+ ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention
11
+
12
+ [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data.
13
+
14
+ Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates.
15
+
16
+ This is the DeBERTa V2 xxlarge model with 48 layers, 1536 hidden size. The total parameters are 1.5B and it is trained with 160GB raw data.
17
+
18
+
19
+ ### Fine-tuning on NLU tasks
20
+
21
+ We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.
22
+
23
+ | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B |
24
+ |---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------|
25
+ | | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S |
26
+ | BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- |
27
+ | RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- |
28
+ | XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- |
29
+ | [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 |
30
+ | [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7|
31
+ | [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9|
32
+ |**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** |
33
+ --------
34
+ #### Notes.
35
+ - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks.
36
+ - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, we recommand using **deepspeed** as it's faster and saves memory.
37
+
38
+ Run with `Deepspeed`,
39
+
40
+ ```bash
41
+ pip install datasets
42
+ pip install deepspeed
43
+
44
+ # Download the deepspeed config file
45
+ wget https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/ds_config.json -O ds_config.json
46
+
47
+ export TASK_NAME=mnli
48
+ output_dir="ds_results"
49
+ num_gpus=8
50
+ batch_size=8
51
+ python -m torch.distributed.launch --nproc_per_node=${num_gpus} \\
52
+ run_glue.py \\
53
+ --model_name_or_path microsoft/deberta-v2-xxlarge \\
54
+ --task_name $TASK_NAME \\
55
+ --do_train \\
56
+ --do_eval \\
57
+ --max_seq_length 256 \\
58
+ --per_device_train_batch_size ${batch_size} \\
59
+ --learning_rate 3e-6 \\
60
+ --num_train_epochs 3 \\
61
+ --output_dir $output_dir \\
62
+ --overwrite_output_dir \\
63
+ --logging_steps 10 \\
64
+ --logging_dir $output_dir \\
65
+ --deepspeed ds_config.json
66
+ ```
67
+
68
+ You can also run with `--sharded_ddp`
69
+ ```bash
70
+ cd transformers/examples/text-classification/
71
+ export TASK_NAME=mnli
72
+ python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\
73
+ --task_name $TASK_NAME --do_train --do_eval --max_seq_length 256 --per_device_train_batch_size 8 \\
74
+ --learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16
75
+ ```
76
+
77
+
78
+ ### Citation
79
+
80
+ If you find DeBERTa useful for your work, please cite the following paper:
81
+
82
+ ``` latex
83
+ @inproceedings{
84
+ he2021deberta,
85
+ title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION},
86
+ author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
87
+ booktitle={International Conference on Learning Representations},
88
+ year={2021},
89
+ url={https://openreview.net/forum?id=XPZIaotutsD}
90
+ }
91
+ ```
__init__.py ADDED
File without changes
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "DebertaV2ForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_deberta.DebertaV2Config",
7
+ "AutoModel": "modeling_deberta.DebertaV2Model",
8
+ "AutoModelForMaskedLM": "modeling_deberta.DebertaV2ForMaskedLM",
9
+ "AutoModelForCausalLM": "modeling_deberta.DebertaV2ForCausalLM"
10
+ },
11
+ "sep_token_id": 2,
12
+ "mask_token_id": 128000,
13
+ "attention_probs_dropout_prob": 0.1,
14
+ "hidden_act": "gelu",
15
+ "hidden_dropout_prob": 0.1,
16
+ "hidden_size": 1536,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 6144,
19
+ "max_position_embeddings": 512,
20
+ "relative_attention": true,
21
+ "position_buckets": 256,
22
+ "norm_rel_ebd": "layer_norm",
23
+ "share_att_key": true,
24
+ "pos_att_type": "p2c|c2p",
25
+ "layer_norm_eps": 1e-7,
26
+ "conv_kernel_size": 3,
27
+ "conv_act": "gelu",
28
+ "max_relative_positions": -1,
29
+ "position_biased_input": false,
30
+ "num_attention_heads": 24,
31
+ "attention_head_size": 64,
32
+ "num_hidden_layers": 48,
33
+ "type_vocab_size": 0,
34
+ "vocab_size": 128100
35
+ }
configuration_deberta.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+ class DebertaV2Config(PretrainedConfig):
4
+ model_type = "deberta-v2"
5
+
6
+ def __init__(
7
+ self,
8
+ vocab_size=128100,
9
+ hidden_size=1536,
10
+ sep_token_id=2,
11
+ mask_token_id=128000,
12
+ num_hidden_layers=24,
13
+ num_attention_heads=24,
14
+ intermediate_size=6144,
15
+ hidden_act="gelu",
16
+ hidden_dropout_prob=0.1,
17
+ attention_probs_dropout_prob=0.1,
18
+ max_position_embeddings=512,
19
+ type_vocab_size=0,
20
+ initializer_range=0.02,
21
+ layer_norm_eps=1e-7,
22
+ relative_attention=False,
23
+ max_relative_positions=-1,
24
+ pad_token_id=0,
25
+ position_biased_input=True,
26
+ pos_att_type=None,
27
+ pooler_dropout=0,
28
+ pooler_hidden_act="gelu",
29
+ **kwargs,
30
+ ):
31
+ super().__init__(**kwargs)
32
+
33
+ self.hidden_size = hidden_size
34
+ self.mask_token_id = mask_token_id
35
+ self.sep_token_id = sep_token_id
36
+ self.num_hidden_layers = num_hidden_layers
37
+ self.num_attention_heads = num_attention_heads
38
+ self.intermediate_size = intermediate_size
39
+ self.hidden_act = hidden_act
40
+ self.hidden_dropout_prob = hidden_dropout_prob
41
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
42
+ self.max_position_embeddings = max_position_embeddings
43
+ self.type_vocab_size = type_vocab_size
44
+ self.initializer_range = initializer_range
45
+ self.relative_attention = relative_attention
46
+ self.max_relative_positions = max_relative_positions
47
+ self.pad_token_id = pad_token_id
48
+ self.position_biased_input = position_biased_input
49
+
50
+ # Backwards compatibility
51
+ if isinstance(pos_att_type, str):
52
+ pos_att_type = [x.strip() for x in pos_att_type.lower().split("|")]
53
+
54
+ self.pos_att_type = pos_att_type
55
+ self.vocab_size = vocab_size
56
+ self.layer_norm_eps = layer_norm_eps
57
+
58
+ self.pooler_hidden_size = kwargs.get("pooler_hidden_size", hidden_size)
59
+ self.pooler_dropout = pooler_dropout
60
+ self.pooler_hidden_act = pooler_hidden_act
ds_config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "fp16": {
3
+
4
+ "enabled": true,
5
+
6
+ "initial_scale_power": 12
7
+
8
+ },
9
+ "zero_optimization": {
10
+
11
+ "stage": 2,
12
+
13
+ "reduce_bucket_size": 5e7,
14
+
15
+ "allgather_bucket_size": 1.25e9,
16
+
17
+ "overlap_comm": true,
18
+
19
+ "contiguous_gradients": true
20
+
21
+ },
22
+ "zero_allow_untested_optimizer": true
23
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.36.0",
7
+ "top_k": 64,
8
+ "top_p": 0.9,
9
+ "repetition_penalty": 1.0,
10
+ "sample": true,
11
+ "temperature": 0.3,
12
+ "max_new_tokens": 512,
13
+ "use_cache": false
14
+ }
modeling_deberta.py ADDED
@@ -0,0 +1,1391 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 Microsoft and the Hugging Face Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch DeBERTa-v2 model."""
16
+
17
+ from collections.abc import Sequence
18
+ from typing import Optional, Tuple, Union
19
+
20
+ import torch
21
+ import torch.utils.checkpoint
22
+ from torch import nn
23
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
24
+
25
+ from transformers.activations import ACT2FN
26
+ from transformers.modeling_outputs import (
27
+ BaseModelOutput,
28
+ MaskedLMOutput,
29
+ CausalLMOutput,
30
+ MultipleChoiceModelOutput,
31
+ QuestionAnsweringModelOutput,
32
+ SequenceClassifierOutput,
33
+ TokenClassifierOutput,
34
+ )
35
+ from transformers.modeling_utils import PreTrainedModel
36
+ from transformers.pytorch_utils import softmax_backward_data
37
+ from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
38
+ from transformers.models.deberta_v2.modeling_deberta_v2 import DebertaV2Config
39
+
40
+
41
+ logger = logging.get_logger(__name__)
42
+
43
+ _CONFIG_FOR_DOC = "DebertaV2Config"
44
+ _CHECKPOINT_FOR_DOC = "microsoft/deberta-v2-xlarge"
45
+ _QA_TARGET_START_INDEX = 2
46
+ _QA_TARGET_END_INDEX = 9
47
+
48
+ DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = [
49
+ "microsoft/deberta-v2-xlarge",
50
+ "microsoft/deberta-v2-xxlarge",
51
+ "microsoft/deberta-v2-xlarge-mnli",
52
+ "microsoft/deberta-v2-xxlarge-mnli",
53
+ ]
54
+
55
+
56
+ # Copied from transformers.models.deberta.modeling_deberta.ContextPooler
57
+ class ContextPooler(nn.Module):
58
+ def __init__(self, config):
59
+ super().__init__()
60
+ self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size)
61
+ self.dropout = StableDropout(config.pooler_dropout)
62
+ self.config = config
63
+
64
+ def forward(self, hidden_states):
65
+ # We "pool" the model by simply taking the hidden state corresponding
66
+ # to the first token.
67
+
68
+ context_token = hidden_states[:, 0]
69
+ context_token = self.dropout(context_token)
70
+ pooled_output = self.dense(context_token)
71
+ pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
72
+ return pooled_output
73
+
74
+ @property
75
+ def output_dim(self):
76
+ return self.config.hidden_size
77
+
78
+
79
+ # Copied from transformers.models.deberta.modeling_deberta.XSoftmax with deberta->deberta_v2
80
+ class XSoftmax(torch.autograd.Function):
81
+ """
82
+ Masked Softmax which is optimized for saving memory
83
+
84
+ Args:
85
+ input (`torch.tensor`): The input tensor that will apply softmax.
86
+ mask (`torch.IntTensor`):
87
+ The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
88
+ dim (int): The dimension that will apply softmax
89
+
90
+ Example:
91
+
92
+ ```python
93
+ >>> import torch
94
+ >>> from transformers.models.deberta_v2.modeling_deberta_v2 import XSoftmax
95
+
96
+ >>> # Make a tensor
97
+ >>> x = torch.randn([4, 20, 100])
98
+
99
+ >>> # Create a mask
100
+ >>> mask = (x > 0).int()
101
+
102
+ >>> # Specify the dimension to apply softmax
103
+ >>> dim = -1
104
+
105
+ >>> y = XSoftmax.apply(x, mask, dim)
106
+ ```"""
107
+
108
+ @staticmethod
109
+ def forward(self, input, mask, dim):
110
+ self.dim = dim
111
+ rmask = ~(mask.to(torch.bool))
112
+
113
+ output = input.masked_fill(rmask, torch.tensor(torch.finfo(input.dtype).min))
114
+ output = torch.softmax(output, self.dim)
115
+ output.masked_fill_(rmask, 0)
116
+ self.save_for_backward(output)
117
+ return output
118
+
119
+ @staticmethod
120
+ def backward(self, grad_output):
121
+ (output,) = self.saved_tensors
122
+ inputGrad = softmax_backward_data(self, grad_output, output, self.dim, output)
123
+ return inputGrad, None, None
124
+
125
+ @staticmethod
126
+ def symbolic(g, self, mask, dim):
127
+ import torch.onnx.symbolic_helper as sym_help
128
+ from torch.onnx.symbolic_opset9 import masked_fill, softmax
129
+
130
+ mask_cast_value = g.op("Cast", mask, to_i=sym_help.cast_pytorch_to_onnx["Long"])
131
+ r_mask = g.op(
132
+ "Cast",
133
+ g.op("Sub", g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64)), mask_cast_value),
134
+ to_i=sym_help.cast_pytorch_to_onnx["Bool"],
135
+ )
136
+ output = masked_fill(
137
+ g, self, r_mask, g.op("Constant", value_t=torch.tensor(torch.finfo(self.type().dtype()).min))
138
+ )
139
+ output = softmax(g, output, dim)
140
+ return masked_fill(g, output, r_mask, g.op("Constant", value_t=torch.tensor(0, dtype=torch.bool)))
141
+
142
+
143
+ # Copied from transformers.models.deberta.modeling_deberta.DropoutContext
144
+ class DropoutContext(object):
145
+ def __init__(self):
146
+ self.dropout = 0
147
+ self.mask = None
148
+ self.scale = 1
149
+ self.reuse_mask = True
150
+
151
+
152
+ # Copied from transformers.models.deberta.modeling_deberta.get_mask
153
+ def get_mask(input, local_context):
154
+ if not isinstance(local_context, DropoutContext):
155
+ dropout = local_context
156
+ mask = None
157
+ else:
158
+ dropout = local_context.dropout
159
+ dropout *= local_context.scale
160
+ mask = local_context.mask if local_context.reuse_mask else None
161
+
162
+ if dropout > 0 and mask is None:
163
+ mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).to(torch.bool)
164
+
165
+ if isinstance(local_context, DropoutContext):
166
+ if local_context.mask is None:
167
+ local_context.mask = mask
168
+
169
+ return mask, dropout
170
+
171
+
172
+ # Copied from transformers.models.deberta.modeling_deberta.XDropout
173
+ class XDropout(torch.autograd.Function):
174
+ """Optimized dropout function to save computation and memory by using mask operation instead of multiplication."""
175
+
176
+ @staticmethod
177
+ def forward(ctx, input, local_ctx):
178
+ mask, dropout = get_mask(input, local_ctx)
179
+ ctx.scale = 1.0 / (1 - dropout)
180
+ if dropout > 0:
181
+ ctx.save_for_backward(mask)
182
+ return input.masked_fill(mask, 0) * ctx.scale
183
+ else:
184
+ return input
185
+
186
+ @staticmethod
187
+ def backward(ctx, grad_output):
188
+ if ctx.scale > 1:
189
+ (mask,) = ctx.saved_tensors
190
+ return grad_output.masked_fill(mask, 0) * ctx.scale, None
191
+ else:
192
+ return grad_output, None
193
+
194
+ @staticmethod
195
+ def symbolic(g: torch._C.Graph, input: torch._C.Value, local_ctx: Union[float, DropoutContext]) -> torch._C.Value:
196
+ from torch.onnx import symbolic_opset12
197
+
198
+ dropout_p = local_ctx
199
+ if isinstance(local_ctx, DropoutContext):
200
+ dropout_p = local_ctx.dropout
201
+ # StableDropout only calls this function when training.
202
+ train = True
203
+ # TODO: We should check if the opset_version being used to export
204
+ # is > 12 here, but there's no good way to do that. As-is, if the
205
+ # opset_version < 12, export will fail with a CheckerError.
206
+ # Once https://github.com/pytorch/pytorch/issues/78391 is fixed, do something like:
207
+ # if opset_version < 12:
208
+ # return torch.onnx.symbolic_opset9.dropout(g, input, dropout_p, train)
209
+ return symbolic_opset12.dropout(g, input, dropout_p, train)
210
+
211
+
212
+ # Copied from transformers.models.deberta.modeling_deberta.StableDropout
213
+ class StableDropout(nn.Module):
214
+ """
215
+ Optimized dropout module for stabilizing the training
216
+
217
+ Args:
218
+ drop_prob (float): the dropout probabilities
219
+ """
220
+
221
+ def __init__(self, drop_prob):
222
+ super().__init__()
223
+ self.drop_prob = drop_prob
224
+ self.count = 0
225
+ self.context_stack = None
226
+
227
+ def forward(self, x):
228
+ """
229
+ Call the module
230
+
231
+ Args:
232
+ x (`torch.tensor`): The input tensor to apply dropout
233
+ """
234
+ if self.training and self.drop_prob > 0:
235
+ return XDropout.apply(x, self.get_context())
236
+ return x
237
+
238
+ def clear_context(self):
239
+ self.count = 0
240
+ self.context_stack = None
241
+
242
+ def init_context(self, reuse_mask=True, scale=1):
243
+ if self.context_stack is None:
244
+ self.context_stack = []
245
+ self.count = 0
246
+ for c in self.context_stack:
247
+ c.reuse_mask = reuse_mask
248
+ c.scale = scale
249
+
250
+ def get_context(self):
251
+ if self.context_stack is not None:
252
+ if self.count >= len(self.context_stack):
253
+ self.context_stack.append(DropoutContext())
254
+ ctx = self.context_stack[self.count]
255
+ ctx.dropout = self.drop_prob
256
+ self.count += 1
257
+ return ctx
258
+ else:
259
+ return self.drop_prob
260
+
261
+
262
+ # Copied from transformers.models.deberta.modeling_deberta.DebertaSelfOutput with DebertaLayerNorm->LayerNorm
263
+ class DebertaV2SelfOutput(nn.Module):
264
+ def __init__(self, config):
265
+ super().__init__()
266
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
267
+ self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
268
+ self.dropout = StableDropout(config.hidden_dropout_prob)
269
+
270
+ def forward(self, hidden_states, input_tensor):
271
+ hidden_states = self.dense(hidden_states)
272
+ hidden_states = self.dropout(hidden_states)
273
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
274
+ return hidden_states
275
+
276
+
277
+ # Copied from transformers.models.deberta.modeling_deberta.DebertaAttention with Deberta->DebertaV2
278
+ class DebertaV2Attention(nn.Module):
279
+ def __init__(self, config):
280
+ super().__init__()
281
+ self.self = DisentangledSelfAttention(config)
282
+ self.output = DebertaV2SelfOutput(config)
283
+ self.config = config
284
+
285
+ def forward(
286
+ self,
287
+ hidden_states,
288
+ attention_mask,
289
+ output_attentions=False,
290
+ query_states=None,
291
+ relative_pos=None,
292
+ rel_embeddings=None,
293
+ ):
294
+ self_output = self.self(
295
+ hidden_states,
296
+ attention_mask,
297
+ output_attentions,
298
+ query_states=query_states,
299
+ relative_pos=relative_pos,
300
+ rel_embeddings=rel_embeddings,
301
+ )
302
+ if output_attentions:
303
+ self_output, att_matrix = self_output
304
+ if query_states is None:
305
+ query_states = hidden_states
306
+ attention_output = self.output(self_output, query_states)
307
+
308
+ if output_attentions:
309
+ return (attention_output, att_matrix)
310
+ else:
311
+ return attention_output
312
+
313
+
314
+ # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->DebertaV2
315
+ class DebertaV2Intermediate(nn.Module):
316
+ def __init__(self, config):
317
+ super().__init__()
318
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
319
+ if isinstance(config.hidden_act, str):
320
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
321
+ else:
322
+ self.intermediate_act_fn = config.hidden_act
323
+
324
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
325
+ hidden_states = self.dense(hidden_states)
326
+ hidden_states = self.intermediate_act_fn(hidden_states)
327
+ return hidden_states
328
+
329
+
330
+ # Copied from transformers.models.deberta.modeling_deberta.DebertaOutput with DebertaLayerNorm->LayerNorm
331
+ class DebertaV2Output(nn.Module):
332
+ def __init__(self, config):
333
+ super().__init__()
334
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
335
+ self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
336
+ self.dropout = StableDropout(config.hidden_dropout_prob)
337
+ self.config = config
338
+
339
+ def forward(self, hidden_states, input_tensor):
340
+ hidden_states = self.dense(hidden_states)
341
+ hidden_states = self.dropout(hidden_states)
342
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
343
+ return hidden_states
344
+
345
+
346
+ # Copied from transformers.models.deberta.modeling_deberta.DebertaLayer with Deberta->DebertaV2
347
+ class DebertaV2Layer(nn.Module):
348
+ def __init__(self, config):
349
+ super().__init__()
350
+ self.attention = DebertaV2Attention(config)
351
+ self.intermediate = DebertaV2Intermediate(config)
352
+ self.output = DebertaV2Output(config)
353
+
354
+ def forward(
355
+ self,
356
+ hidden_states,
357
+ attention_mask,
358
+ query_states=None,
359
+ relative_pos=None,
360
+ rel_embeddings=None,
361
+ output_attentions=False,
362
+ ):
363
+ attention_output = self.attention(
364
+ hidden_states,
365
+ attention_mask,
366
+ output_attentions=output_attentions,
367
+ query_states=query_states,
368
+ relative_pos=relative_pos,
369
+ rel_embeddings=rel_embeddings,
370
+ )
371
+ if output_attentions:
372
+ attention_output, att_matrix = attention_output
373
+ intermediate_output = self.intermediate(attention_output)
374
+ layer_output = self.output(intermediate_output, attention_output)
375
+ if output_attentions:
376
+ return (layer_output, att_matrix)
377
+ else:
378
+ return layer_output
379
+
380
+
381
+ class ConvLayer(nn.Module):
382
+ def __init__(self, config):
383
+ super().__init__()
384
+ kernel_size = getattr(config, "conv_kernel_size", 3)
385
+ groups = getattr(config, "conv_groups", 1)
386
+ self.conv_act = getattr(config, "conv_act", "tanh")
387
+ self.conv = nn.Conv1d(
388
+ config.hidden_size, config.hidden_size, kernel_size, padding=(kernel_size - 1) // 2, groups=groups
389
+ )
390
+ self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
391
+ self.dropout = StableDropout(config.hidden_dropout_prob)
392
+ self.config = config
393
+
394
+ def forward(self, hidden_states, residual_states, input_mask):
395
+ out = self.conv(hidden_states.permute(0, 2, 1).contiguous()).permute(0, 2, 1).contiguous()
396
+ rmask = (1 - input_mask).bool()
397
+ out.masked_fill_(rmask.unsqueeze(-1).expand(out.size()), 0)
398
+ out = ACT2FN[self.conv_act](self.dropout(out))
399
+
400
+ layer_norm_input = residual_states + out
401
+ output = self.LayerNorm(layer_norm_input).to(layer_norm_input)
402
+
403
+ if input_mask is None:
404
+ output_states = output
405
+ else:
406
+ if input_mask.dim() != layer_norm_input.dim():
407
+ if input_mask.dim() == 4:
408
+ input_mask = input_mask.squeeze(1).squeeze(1)
409
+ input_mask = input_mask.unsqueeze(2)
410
+
411
+ input_mask = input_mask.to(output.dtype)
412
+ output_states = output * input_mask
413
+
414
+ return output_states
415
+
416
+
417
+ class DebertaV2Encoder(nn.Module):
418
+ """Modified BertEncoder with relative position bias support"""
419
+
420
+ def __init__(self, config):
421
+ super().__init__()
422
+
423
+ self.layer = nn.ModuleList([DebertaV2Layer(config) for _ in range(config.num_hidden_layers)])
424
+ self.relative_attention = getattr(config, "relative_attention", False)
425
+
426
+ if self.relative_attention:
427
+ self.max_relative_positions = getattr(config, "max_relative_positions", -1)
428
+ if self.max_relative_positions < 1:
429
+ self.max_relative_positions = config.max_position_embeddings
430
+
431
+ self.position_buckets = getattr(config, "position_buckets", -1)
432
+ pos_ebd_size = self.max_relative_positions * 2
433
+
434
+ if self.position_buckets > 0:
435
+ pos_ebd_size = self.position_buckets * 2
436
+
437
+ self.rel_embeddings = nn.Embedding(pos_ebd_size, config.hidden_size)
438
+
439
+ self.norm_rel_ebd = [x.strip() for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")]
440
+
441
+ if "layer_norm" in self.norm_rel_ebd:
442
+ self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True)
443
+
444
+ self.conv = ConvLayer(config) if getattr(config, "conv_kernel_size", 0) > 0 else None
445
+ self.gradient_checkpointing = False
446
+
447
+ def get_rel_embedding(self):
448
+ rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
449
+ if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd):
450
+ rel_embeddings = self.LayerNorm(rel_embeddings)
451
+ return rel_embeddings
452
+
453
+ def get_attention_mask(self, attention_mask):
454
+ if attention_mask.dim() <= 2:
455
+ extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
456
+ attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1)
457
+ attention_mask = attention_mask.triu(diagonal=-510).tril(diagonal=510)
458
+ attention_mask[:, :, :, 0] = 1
459
+ attention_mask[:, :, :, -1] = 1
460
+ elif attention_mask.dim() == 3:
461
+ attention_mask = attention_mask.unsqueeze(1)
462
+
463
+ return attention_mask
464
+
465
+ def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
466
+ if self.relative_attention and relative_pos is None:
467
+ q = query_states.size(-2) if query_states is not None else hidden_states.size(-2)
468
+ relative_pos = build_relative_position(
469
+ q,
470
+ hidden_states.size(-2),
471
+ bucket_size=self.position_buckets,
472
+ max_position=self.max_relative_positions,
473
+ device=hidden_states.device,
474
+ )
475
+ return relative_pos
476
+
477
+ def forward(
478
+ self,
479
+ hidden_states,
480
+ attention_mask,
481
+ output_hidden_states=True,
482
+ output_attentions=False,
483
+ query_states=None,
484
+ relative_pos=None,
485
+ return_dict=True,
486
+ ):
487
+ if attention_mask.dim() <= 2:
488
+ input_mask = attention_mask
489
+ else:
490
+ input_mask = attention_mask.sum(-2) > 0
491
+ attention_mask = self.get_attention_mask(attention_mask)
492
+ relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
493
+
494
+ all_hidden_states = () if output_hidden_states else None
495
+ all_attentions = () if output_attentions else None
496
+
497
+ if isinstance(hidden_states, Sequence):
498
+ next_kv = hidden_states[0]
499
+ else:
500
+ next_kv = hidden_states
501
+ rel_embeddings = self.get_rel_embedding()
502
+ output_states = next_kv
503
+ for i, layer_module in enumerate(self.layer):
504
+ if output_hidden_states:
505
+ all_hidden_states = all_hidden_states + (output_states,)
506
+
507
+ if self.gradient_checkpointing and self.training:
508
+ output_states = self._gradient_checkpointing_func(
509
+ layer_module.__call__,
510
+ next_kv,
511
+ attention_mask,
512
+ query_states,
513
+ relative_pos,
514
+ rel_embeddings,
515
+ output_attentions,
516
+ )
517
+ else:
518
+ output_states = layer_module(
519
+ next_kv,
520
+ attention_mask,
521
+ query_states=query_states,
522
+ relative_pos=relative_pos,
523
+ rel_embeddings=rel_embeddings,
524
+ output_attentions=output_attentions,
525
+ )
526
+
527
+ if output_attentions:
528
+ output_states, att_m = output_states
529
+
530
+ if i == 0 and self.conv is not None:
531
+ output_states = self.conv(hidden_states, output_states, input_mask)
532
+
533
+ if query_states is not None:
534
+ query_states = output_states
535
+ if isinstance(hidden_states, Sequence):
536
+ next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
537
+ else:
538
+ next_kv = output_states
539
+
540
+ if output_attentions:
541
+ all_attentions = all_attentions + (att_m,)
542
+
543
+ if output_hidden_states:
544
+ all_hidden_states = all_hidden_states + (output_states,)
545
+
546
+ if not return_dict:
547
+ return tuple(v for v in [output_states, all_hidden_states, all_attentions] if v is not None)
548
+ return BaseModelOutput(
549
+ last_hidden_state=output_states, hidden_states=all_hidden_states, attentions=all_attentions
550
+ )
551
+
552
+
553
+ def make_log_bucket_position(relative_pos, bucket_size, max_position):
554
+ sign = torch.sign(relative_pos)
555
+ mid = bucket_size // 2
556
+ abs_pos = torch.where(
557
+ (relative_pos < mid) & (relative_pos > -mid),
558
+ torch.tensor(mid - 1).type_as(relative_pos),
559
+ torch.abs(relative_pos),
560
+ )
561
+ log_pos = (
562
+ torch.ceil(torch.log(abs_pos / mid) / torch.log(torch.tensor((max_position - 1) / mid)) * (mid - 1)) + mid
563
+ )
564
+ bucket_pos = torch.where(abs_pos <= mid, relative_pos.type_as(log_pos), log_pos * sign)
565
+ bucket_pos = bucket_pos.clamp(min=-bucket_size+1, max=bucket_size-1)
566
+ return bucket_pos
567
+
568
+
569
+ def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1, device=None):
570
+ """
571
+ Build relative position according to the query and key
572
+
573
+ We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key
574
+ \\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q -
575
+ P_k\\)
576
+
577
+ Args:
578
+ query_size (int): the length of query
579
+ key_size (int): the length of key
580
+ bucket_size (int): the size of position bucket
581
+ max_position (int): the maximum allowed absolute position
582
+ device (`torch.device`): the device on which tensors will be created.
583
+
584
+ Return:
585
+ `torch.LongTensor`: A tensor with shape [1, query_size, key_size]
586
+ """
587
+
588
+ q_ids = torch.arange(0, query_size, device=device)
589
+ k_ids = torch.arange(0, key_size, device=device)
590
+ rel_pos_ids = q_ids[:, None] - k_ids[None, :]
591
+ if bucket_size > 0 and max_position > 0:
592
+ rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position)
593
+ rel_pos_ids = rel_pos_ids.to(torch.long)
594
+ rel_pos_ids = rel_pos_ids[:query_size, :]
595
+ rel_pos_ids = rel_pos_ids.unsqueeze(0)
596
+ return rel_pos_ids
597
+
598
+
599
+ @torch.jit.script
600
+ # Copied from transformers.models.deberta.modeling_deberta.c2p_dynamic_expand
601
+ def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos):
602
+ return c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)])
603
+
604
+
605
+ @torch.jit.script
606
+ # Copied from transformers.models.deberta.modeling_deberta.p2c_dynamic_expand
607
+ def p2c_dynamic_expand(c2p_pos, query_layer, key_layer):
608
+ return c2p_pos.expand([query_layer.size(0), query_layer.size(1), key_layer.size(-2), key_layer.size(-2)])
609
+
610
+
611
+ @torch.jit.script
612
+ # Copied from transformers.models.deberta.modeling_deberta.pos_dynamic_expand
613
+ def pos_dynamic_expand(pos_index, p2c_att, key_layer):
614
+ return pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2)))
615
+
616
+
617
+ class DisentangledSelfAttention(nn.Module):
618
+ """
619
+ Disentangled self-attention module
620
+
621
+ Parameters:
622
+ config (`DebertaV2Config`):
623
+ A model config class instance with the configuration to build a new model. The schema is similar to
624
+ *BertConfig*, for more details, please refer [`DebertaV2Config`]
625
+
626
+ """
627
+
628
+ def __init__(self, config):
629
+ super().__init__()
630
+ if config.hidden_size % config.num_attention_heads != 0:
631
+ raise ValueError(
632
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
633
+ f"heads ({config.num_attention_heads})"
634
+ )
635
+ self.num_attention_heads = config.num_attention_heads
636
+ _attention_head_size = config.hidden_size // config.num_attention_heads
637
+ self.attention_head_size = getattr(config, "attention_head_size", _attention_head_size)
638
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
639
+ self.query_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
640
+ self.key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
641
+ self.value_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
642
+
643
+ self.share_att_key = getattr(config, "share_att_key", False)
644
+ self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []
645
+ self.relative_attention = getattr(config, "relative_attention", False)
646
+
647
+ if self.relative_attention:
648
+ self.position_buckets = getattr(config, "position_buckets", -1)
649
+ self.max_relative_positions = getattr(config, "max_relative_positions", -1)
650
+ if self.max_relative_positions < 1:
651
+ self.max_relative_positions = config.max_position_embeddings
652
+ self.pos_ebd_size = self.max_relative_positions
653
+ if self.position_buckets > 0:
654
+ self.pos_ebd_size = self.position_buckets
655
+
656
+ self.pos_dropout = StableDropout(config.hidden_dropout_prob)
657
+
658
+ if not self.share_att_key:
659
+ if "c2p" in self.pos_att_type:
660
+ self.pos_key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
661
+ if "p2c" in self.pos_att_type:
662
+ self.pos_query_proj = nn.Linear(config.hidden_size, self.all_head_size)
663
+
664
+ self.dropout = StableDropout(config.attention_probs_dropout_prob)
665
+
666
+ def transpose_for_scores(self, x, attention_heads):
667
+ new_x_shape = x.size()[:-1] + (attention_heads, -1)
668
+ x = x.view(new_x_shape)
669
+ return x.permute(0, 2, 1, 3).contiguous().view(-1, x.size(1), x.size(-1))
670
+
671
+ def forward(
672
+ self,
673
+ hidden_states,
674
+ attention_mask,
675
+ output_attentions=False,
676
+ query_states=None,
677
+ relative_pos=None,
678
+ rel_embeddings=None,
679
+ ):
680
+ """
681
+ Call the module
682
+
683
+ Args:
684
+ hidden_states (`torch.FloatTensor`):
685
+ Input states to the module usually the output from previous layer, it will be the Q,K and V in
686
+ *Attention(Q,K,V)*
687
+
688
+ attention_mask (`torch.BoolTensor`):
689
+ An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum
690
+ sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j*
691
+ th token.
692
+
693
+ output_attentions (`bool`, optional):
694
+ Whether return the attention matrix.
695
+
696
+ query_states (`torch.FloatTensor`, optional):
697
+ The *Q* state in *Attention(Q,K,V)*.
698
+
699
+ relative_pos (`torch.LongTensor`):
700
+ The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with
701
+ values ranging in [*-max_relative_positions*, *max_relative_positions*].
702
+
703
+ rel_embeddings (`torch.FloatTensor`):
704
+ The embedding of relative distances. It's a tensor of shape [\\(2 \\times
705
+ \\text{max_relative_positions}\\), *hidden_size*].
706
+
707
+
708
+ """
709
+ if query_states is None:
710
+ query_states = hidden_states
711
+ query_layer = self.transpose_for_scores(self.query_proj(query_states), self.num_attention_heads)
712
+ key_layer = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads)
713
+ value_layer = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads)
714
+
715
+ rel_att = None
716
+ # Take the dot product between "query" and "key" to get the raw attention scores.
717
+ scale_factor = 1
718
+ if "c2p" in self.pos_att_type:
719
+ scale_factor += 1
720
+ if "p2c" in self.pos_att_type:
721
+ scale_factor += 1
722
+ scale = torch.sqrt(torch.tensor(query_layer.size(-1), dtype=torch.float) * scale_factor)
723
+ attention_scores = torch.bmm(query_layer, key_layer.transpose(-1, -2) / scale.to(dtype=query_layer.dtype))
724
+ if self.relative_attention:
725
+ rel_embeddings = self.pos_dropout(rel_embeddings)
726
+ rel_att = self.disentangled_attention_bias(
727
+ query_layer, key_layer, relative_pos, rel_embeddings, scale_factor
728
+ )
729
+
730
+ if rel_att is not None:
731
+ attention_scores = attention_scores + rel_att
732
+ attention_scores = attention_scores
733
+ attention_scores = attention_scores.view(
734
+ -1, self.num_attention_heads, attention_scores.size(-2), attention_scores.size(-1)
735
+ )
736
+
737
+ # bsz x height x length x dimension
738
+ attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1)
739
+ attention_probs = self.dropout(attention_probs)
740
+ context_layer = torch.bmm(
741
+ attention_probs.view(-1, attention_probs.size(-2), attention_probs.size(-1)), value_layer
742
+ )
743
+ context_layer = (
744
+ context_layer.view(-1, self.num_attention_heads, context_layer.size(-2), context_layer.size(-1))
745
+ .permute(0, 2, 1, 3)
746
+ .contiguous()
747
+ )
748
+ new_context_layer_shape = context_layer.size()[:-2] + (-1,)
749
+ context_layer = context_layer.view(new_context_layer_shape)
750
+ if output_attentions:
751
+ return (context_layer, attention_probs)
752
+ else:
753
+ return context_layer
754
+
755
+ def disentangled_attention_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
756
+ if relative_pos is None:
757
+ q = query_layer.size(-2)
758
+ relative_pos = build_relative_position(
759
+ q,
760
+ key_layer.size(-2),
761
+ bucket_size=self.position_buckets,
762
+ max_position=self.max_relative_positions,
763
+ device=query_layer.device,
764
+ )
765
+ if relative_pos.dim() == 2:
766
+ relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
767
+ elif relative_pos.dim() == 3:
768
+ relative_pos = relative_pos.unsqueeze(1)
769
+ # bsz x height x query x key
770
+ elif relative_pos.dim() != 4:
771
+ raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}")
772
+
773
+ att_span = self.pos_ebd_size
774
+ relative_pos = relative_pos.long().to(query_layer.device)
775
+
776
+ rel_embeddings = rel_embeddings[0 : att_span * 2, :].unsqueeze(0)
777
+ if self.share_att_key:
778
+ pos_query_layer = self.transpose_for_scores(
779
+ self.query_proj(rel_embeddings), self.num_attention_heads
780
+ ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1)
781
+ pos_key_layer = self.transpose_for_scores(self.key_proj(rel_embeddings), self.num_attention_heads).repeat(
782
+ query_layer.size(0) // self.num_attention_heads, 1, 1
783
+ )
784
+ else:
785
+ if "c2p" in self.pos_att_type:
786
+ pos_key_layer = self.transpose_for_scores(
787
+ self.pos_key_proj(rel_embeddings), self.num_attention_heads
788
+ ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) # .split(self.all_head_size, dim=-1)
789
+ if "p2c" in self.pos_att_type:
790
+ pos_query_layer = self.transpose_for_scores(
791
+ self.pos_query_proj(rel_embeddings), self.num_attention_heads
792
+ ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) # .split(self.all_head_size, dim=-1)
793
+
794
+ score = 0
795
+ # content->position
796
+ if "c2p" in self.pos_att_type:
797
+ scale = torch.sqrt(torch.tensor(pos_key_layer.size(-1), dtype=torch.float) * scale_factor)
798
+ c2p_att = torch.bmm(query_layer, pos_key_layer.transpose(-1, -2))
799
+ c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1)
800
+ c2p_att = torch.gather(
801
+ c2p_att,
802
+ dim=-1,
803
+ index=c2p_pos.squeeze(0).expand([query_layer.size(0), query_layer.size(1), relative_pos.size(-1)]),
804
+ )
805
+ score += c2p_att / scale.to(dtype=c2p_att.dtype)
806
+
807
+ # position->content
808
+ if "p2c" in self.pos_att_type:
809
+ scale = torch.sqrt(torch.tensor(pos_query_layer.size(-1), dtype=torch.float) * scale_factor)
810
+ if key_layer.size(-2) != query_layer.size(-2):
811
+ r_pos = build_relative_position(
812
+ key_layer.size(-2),
813
+ key_layer.size(-2),
814
+ bucket_size=self.position_buckets,
815
+ max_position=self.max_relative_positions,
816
+ device=query_layer.device,
817
+ )
818
+ r_pos = r_pos.unsqueeze(0)
819
+ else:
820
+ r_pos = relative_pos
821
+
822
+ p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1)
823
+ p2c_att = torch.bmm(key_layer, pos_query_layer.transpose(-1, -2))
824
+ p2c_att = torch.gather(
825
+ p2c_att,
826
+ dim=-1,
827
+ index=p2c_pos.squeeze(0).expand([query_layer.size(0), key_layer.size(-2), key_layer.size(-2)]),
828
+ ).transpose(-1, -2)
829
+ score += p2c_att / scale.to(dtype=p2c_att.dtype)
830
+
831
+ return score
832
+
833
+
834
+ # Copied from transformers.models.deberta.modeling_deberta.DebertaEmbeddings with DebertaLayerNorm->LayerNorm
835
+ class DebertaV2Embeddings(nn.Module):
836
+ """Construct the embeddings from word, position and token_type embeddings."""
837
+
838
+ def __init__(self, config):
839
+ super().__init__()
840
+ pad_token_id = getattr(config, "pad_token_id", 0)
841
+ self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
842
+ self.word_embeddings = nn.Embedding(config.vocab_size, self.embedding_size, padding_idx=pad_token_id)
843
+
844
+ self.position_biased_input = getattr(config, "position_biased_input", True)
845
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.embedding_size)
846
+
847
+ if config.type_vocab_size > 0:
848
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, self.embedding_size)
849
+
850
+ if self.embedding_size != config.hidden_size:
851
+ self.embed_proj = nn.Linear(self.embedding_size, config.hidden_size, bias=False)
852
+ self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
853
+ self.dropout = StableDropout(config.hidden_dropout_prob)
854
+ self.config = config
855
+
856
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
857
+ self.register_buffer(
858
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
859
+ )
860
+
861
+ def forward(self, input_ids=None, token_type_ids=None, position_ids=None, mask=None, inputs_embeds=None):
862
+ if input_ids is not None:
863
+ input_shape = input_ids.size()
864
+ else:
865
+ input_shape = inputs_embeds.size()[:-1]
866
+
867
+ seq_length = input_shape[1]
868
+
869
+ if position_ids is None:
870
+ if seq_length > self.position_ids.size(1):
871
+ position_ids = torch.cat([
872
+ torch.zeros(1, seq_length - self.position_ids.size(1), dtype=self.position_ids.dtype, device=self.position_ids.device),
873
+ self.position_ids
874
+ ], dim=1)
875
+ else:
876
+ position_ids = self.position_ids[:, :seq_length]
877
+
878
+ if token_type_ids is None:
879
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
880
+
881
+ if inputs_embeds is None:
882
+ inputs_embeds = self.word_embeddings(input_ids)
883
+
884
+ if self.position_embeddings is not None:
885
+ position_embeddings = self.position_embeddings(position_ids.long())
886
+ else:
887
+ position_embeddings = torch.zeros_like(inputs_embeds)
888
+
889
+ embeddings = inputs_embeds
890
+ if self.position_biased_input:
891
+ embeddings += position_embeddings
892
+ if self.config.type_vocab_size > 0:
893
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
894
+ embeddings += token_type_embeddings
895
+
896
+ if self.embedding_size != self.config.hidden_size:
897
+ embeddings = self.embed_proj(embeddings)
898
+
899
+ embeddings = self.LayerNorm(embeddings)
900
+
901
+ if mask is not None:
902
+ if mask.dim() != embeddings.dim():
903
+ if mask.dim() == 4:
904
+ mask = mask.squeeze(1).squeeze(1)
905
+ mask = mask.unsqueeze(2)
906
+ mask = mask.to(embeddings.dtype)
907
+
908
+ embeddings = embeddings * mask
909
+
910
+ embeddings = self.dropout(embeddings)
911
+ return embeddings, position_embeddings
912
+
913
+
914
+ # Copied from transformers.models.deberta.modeling_deberta.DebertaPreTrainedModel with Deberta->DebertaV2
915
+ class DebertaV2PreTrainedModel(PreTrainedModel):
916
+ """
917
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
918
+ models.
919
+ """
920
+
921
+ config_class = DebertaV2Config
922
+ base_model_prefix = "deberta"
923
+ supports_gradient_checkpointing = True
924
+
925
+ def _init_weights(self, module):
926
+ """Initialize the weights."""
927
+ if isinstance(module, nn.Linear):
928
+ # Slightly different from the TF version which uses truncated_normal for initialization
929
+ # cf https://github.com/pytorch/pytorch/pull/5617
930
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
931
+ if module.bias is not None:
932
+ module.bias.data.zero_()
933
+ elif isinstance(module, nn.Embedding):
934
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
935
+ if module.padding_idx is not None:
936
+ module.weight.data[module.padding_idx].zero_()
937
+
938
+
939
+ DEBERTA_START_DOCSTRING = r"""
940
+ The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled
941
+ Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build
942
+ on top of BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two
943
+ improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data.
944
+
945
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
946
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
947
+ and behavior.
948
+
949
+
950
+ Parameters:
951
+ config ([`DebertaV2Config`]): Model configuration class with all the parameters of the model.
952
+ Initializing with a config file does not load the weights associated with the model, only the
953
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
954
+ """
955
+
956
+ DEBERTA_INPUTS_DOCSTRING = r"""
957
+ Args:
958
+ input_ids (`torch.LongTensor` of shape `({0})`):
959
+ Indices of input sequence tokens in the vocabulary.
960
+
961
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
962
+ [`PreTrainedTokenizer.__call__`] for details.
963
+
964
+ [What are input IDs?](../glossary#input-ids)
965
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
966
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
967
+
968
+ - 1 for tokens that are **not masked**,
969
+ - 0 for tokens that are **masked**.
970
+
971
+ [What are attention masks?](../glossary#attention-mask)
972
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
973
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
974
+ 1]`:
975
+
976
+ - 0 corresponds to a *sentence A* token,
977
+ - 1 corresponds to a *sentence B* token.
978
+
979
+ [What are token type IDs?](../glossary#token-type-ids)
980
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
981
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
982
+ config.max_position_embeddings - 1]`.
983
+
984
+ [What are position IDs?](../glossary#position-ids)
985
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
986
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
987
+ is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
988
+ model's internal embedding lookup matrix.
989
+ output_attentions (`bool`, *optional*):
990
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
991
+ tensors for more detail.
992
+ output_hidden_states (`bool`, *optional*):
993
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
994
+ more detail.
995
+ return_dict (`bool`, *optional*):
996
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
997
+ """
998
+
999
+
1000
+ @add_start_docstrings(
1001
+ "The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.",
1002
+ DEBERTA_START_DOCSTRING,
1003
+ )
1004
+ # Copied from transformers.models.deberta.modeling_deberta.DebertaModel with Deberta->DebertaV2
1005
+ class DebertaV2Model(DebertaV2PreTrainedModel):
1006
+ def __init__(self, config):
1007
+ super().__init__(config)
1008
+
1009
+ self.embeddings = DebertaV2Embeddings(config)
1010
+ self.encoder = DebertaV2Encoder(config)
1011
+ self.z_steps = 4
1012
+ self.config = config
1013
+ # Initialize weights and apply final processing
1014
+ self.post_init()
1015
+
1016
+ def get_input_embeddings(self):
1017
+ return self.embeddings.word_embeddings
1018
+
1019
+ def set_input_embeddings(self, new_embeddings):
1020
+ self.embeddings.word_embeddings = new_embeddings
1021
+
1022
+ def _prune_heads(self, heads_to_prune):
1023
+ """
1024
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
1025
+ class PreTrainedModel
1026
+ """
1027
+ raise NotImplementedError("The prune function is not implemented in DeBERTa model.")
1028
+
1029
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1030
+ @add_code_sample_docstrings(
1031
+ checkpoint=_CHECKPOINT_FOR_DOC,
1032
+ output_type=BaseModelOutput,
1033
+ config_class=_CONFIG_FOR_DOC,
1034
+ )
1035
+ def forward(
1036
+ self,
1037
+ input_ids: Optional[torch.Tensor] = None,
1038
+ attention_mask: Optional[torch.Tensor] = None,
1039
+ token_type_ids: Optional[torch.Tensor] = None,
1040
+ position_ids: Optional[torch.Tensor] = None,
1041
+ inputs_embeds: Optional[torch.Tensor] = None,
1042
+ output_attentions: Optional[bool] = None,
1043
+ output_hidden_states: Optional[bool] = None,
1044
+ return_dict: Optional[bool] = None,
1045
+ ) -> Union[Tuple, BaseModelOutput]:
1046
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1047
+ output_hidden_states = (
1048
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1049
+ )
1050
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1051
+
1052
+ if input_ids is not None and inputs_embeds is not None:
1053
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1054
+ elif input_ids is not None:
1055
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
1056
+ input_shape = input_ids.size()
1057
+ elif inputs_embeds is not None:
1058
+ input_shape = inputs_embeds.size()[:-1]
1059
+ else:
1060
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1061
+
1062
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1063
+
1064
+ if attention_mask is None:
1065
+ attention_mask = torch.ones(input_shape, device=device)
1066
+
1067
+ if token_type_ids is None:
1068
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
1069
+
1070
+ embedding_output, position_embeddings = self.embeddings(
1071
+ input_ids=input_ids,
1072
+ token_type_ids=token_type_ids,
1073
+ position_ids=position_ids,
1074
+ mask=attention_mask,
1075
+ inputs_embeds=inputs_embeds,
1076
+ )
1077
+
1078
+ encoder_outputs = self.encoder(
1079
+ embedding_output,
1080
+ attention_mask,
1081
+ output_hidden_states=True,
1082
+ output_attentions=output_attentions,
1083
+ return_dict=return_dict,
1084
+ )
1085
+ encoded_layers = list(encoder_outputs[1])
1086
+
1087
+ # print(self.z_steps)
1088
+
1089
+ if self.z_steps > 0:
1090
+ hidden_states = encoded_layers[-2]
1091
+ layers = [self.encoder.layer[-1] for _ in range(self.z_steps)]
1092
+ query_states = position_embeddings + encoded_layers[-2]
1093
+ rel_embeddings = self.encoder.get_rel_embedding()
1094
+ attention_mask = self.encoder.get_attention_mask(attention_mask)
1095
+ rel_pos = self.encoder.get_rel_pos(embedding_output)
1096
+ for layer in layers:
1097
+ query_states = layer(
1098
+ hidden_states,
1099
+ attention_mask,
1100
+ output_attentions=False,
1101
+ query_states=query_states,
1102
+ relative_pos=rel_pos,
1103
+ rel_embeddings=rel_embeddings,
1104
+ )
1105
+ encoded_layers.append(query_states)
1106
+
1107
+ sequence_output = encoded_layers[-1]
1108
+
1109
+ if not return_dict:
1110
+ return (sequence_output,) + encoder_outputs[(1 if output_hidden_states else 2) :]
1111
+
1112
+ return BaseModelOutput(
1113
+ last_hidden_state=sequence_output,
1114
+ hidden_states=encoder_outputs.hidden_states if output_hidden_states else None,
1115
+ attentions=encoder_outputs.attentions,
1116
+ )
1117
+
1118
+
1119
+ @add_start_docstrings("""DeBERTa Model with a `language modeling` head on top.""", DEBERTA_START_DOCSTRING)
1120
+ class DebertaV2ForMaskedLM(DebertaV2PreTrainedModel):
1121
+ _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
1122
+
1123
+ def __init__(self, config):
1124
+ super().__init__(config)
1125
+
1126
+ self.deberta = DebertaV2Model(config)
1127
+ self.cls = DebertaV2OnlyMLMHead(config)
1128
+
1129
+ # Initialize weights and apply final processing
1130
+ self.post_init()
1131
+
1132
+ def get_output_embeddings(self):
1133
+ return self.cls.predictions.decoder
1134
+
1135
+ def set_output_embeddings(self, new_embeddings):
1136
+ self.cls.predictions.decoder = new_embeddings
1137
+
1138
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1139
+ @add_code_sample_docstrings(
1140
+ checkpoint=_CHECKPOINT_FOR_DOC,
1141
+ output_type=MaskedLMOutput,
1142
+ config_class=_CONFIG_FOR_DOC,
1143
+ mask="[MASK]",
1144
+ )
1145
+ # Copied from transformers.models.deberta.modeling_deberta.DebertaForMaskedLM.forward with Deberta->DebertaV2
1146
+ def forward(
1147
+ self,
1148
+ input_ids: Optional[torch.Tensor] = None,
1149
+ attention_mask: Optional[torch.Tensor] = None,
1150
+ token_type_ids: Optional[torch.Tensor] = None,
1151
+ position_ids: Optional[torch.Tensor] = None,
1152
+ inputs_embeds: Optional[torch.Tensor] = None,
1153
+ labels: Optional[torch.Tensor] = None,
1154
+ output_attentions: Optional[bool] = None,
1155
+ output_hidden_states: Optional[bool] = None,
1156
+ return_dict: Optional[bool] = None,
1157
+ ) -> Union[Tuple, MaskedLMOutput]:
1158
+ r"""
1159
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1160
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
1161
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
1162
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
1163
+ """
1164
+
1165
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1166
+
1167
+ outputs = self.deberta(
1168
+ input_ids,
1169
+ attention_mask=attention_mask,
1170
+ token_type_ids=token_type_ids,
1171
+ position_ids=position_ids,
1172
+ inputs_embeds=inputs_embeds,
1173
+ output_attentions=output_attentions,
1174
+ output_hidden_states=output_hidden_states,
1175
+ return_dict=return_dict,
1176
+ )
1177
+
1178
+ sequence_output = outputs[0]
1179
+ prediction_scores = self.cls(sequence_output)
1180
+
1181
+ masked_lm_loss = None
1182
+ if labels is not None:
1183
+ loss_fct = CrossEntropyLoss() # -100 index = padding token
1184
+ masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
1185
+
1186
+ if not return_dict:
1187
+ output = (prediction_scores,) + outputs[1:]
1188
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
1189
+
1190
+ return MaskedLMOutput(
1191
+ loss=masked_lm_loss,
1192
+ logits=prediction_scores,
1193
+ hidden_states=outputs.hidden_states,
1194
+ attentions=outputs.attentions,
1195
+ )
1196
+
1197
+ @add_start_docstrings("""DeBERTa Model with a `language modeling` head on top.""", DEBERTA_START_DOCSTRING)
1198
+ class DebertaV2ForCausalLM(DebertaV2ForMaskedLM):
1199
+ _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
1200
+
1201
+ def __init__(self, config):
1202
+ super().__init__(config)
1203
+ config.is_decoder = True
1204
+ self.mask_token_id = config.mask_token_id
1205
+ self.sep_token_id = config.sep_token_id
1206
+ self.n_masks = 3
1207
+
1208
+ def set_decoder(self, decoder):
1209
+ self.deberta = decoder
1210
+
1211
+ def get_decoder(self):
1212
+ return self.deberta
1213
+
1214
+ def can_generate(self):
1215
+ return True
1216
+
1217
+ def prepare_inputs_for_generation(
1218
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1219
+ ):
1220
+ position_ids = kwargs.get("position_ids", None)
1221
+
1222
+ if input_ids[0, -1] == 2:
1223
+ input_ids = input_ids[:, :-1]
1224
+ if attention_mask is not None:
1225
+ attention_mask = attention_mask[:, :-1]
1226
+ if position_ids is not None:
1227
+ position_ids = position_ids[:, :-1]
1228
+
1229
+ # Omit tokens covered by past_key_values
1230
+ if past_key_values is not None:
1231
+ pass # should never happen
1232
+
1233
+ if attention_mask is not None and position_ids is None:
1234
+ # create position_ids on the fly for batch generation
1235
+ position_ids = attention_mask.long().cumsum(-1) - 1
1236
+ position_ids.masked_fill_(attention_mask == 0, 1)
1237
+ if past_key_values:
1238
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1239
+
1240
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1241
+ if inputs_embeds is not None and past_key_values is None:
1242
+ model_inputs = {"inputs_embeds": inputs_embeds}
1243
+ else:
1244
+ model_inputs = {"input_ids": input_ids}
1245
+
1246
+ model_inputs.update(
1247
+ {
1248
+ "position_ids": position_ids,
1249
+ "past_key_values": past_key_values,
1250
+ "use_cache": kwargs.get("use_cache"),
1251
+ "attention_mask": attention_mask,
1252
+ }
1253
+ )
1254
+ return model_inputs
1255
+
1256
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1257
+ @add_code_sample_docstrings(
1258
+ checkpoint=_CHECKPOINT_FOR_DOC,
1259
+ output_type=CausalLMOutput,
1260
+ config_class=_CONFIG_FOR_DOC,
1261
+ mask="[MASK]",
1262
+ )
1263
+ def forward(
1264
+ self,
1265
+ input_ids: Optional[torch.Tensor] = None,
1266
+ attention_mask: Optional[torch.Tensor] = None,
1267
+ token_type_ids: Optional[torch.Tensor] = None,
1268
+ position_ids: Optional[torch.Tensor] = None,
1269
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1270
+ inputs_embeds: Optional[torch.Tensor] = None,
1271
+ labels: Optional[torch.Tensor] = None,
1272
+ use_cache: Optional[bool] = None,
1273
+ output_attentions: Optional[bool] = None,
1274
+ output_hidden_states: Optional[bool] = None,
1275
+ return_dict: Optional[bool] = None,
1276
+ ) -> Union[Tuple, CausalLMOutput]:
1277
+
1278
+ assert labels is None, "only inference is supported for now"
1279
+ assert inputs_embeds is None, "inputs_embeds is not supported for now"
1280
+ assert token_type_ids is None, "token_type_ids is not supported for now"
1281
+ assert past_key_values is None, "past_key_values is not supported for now"
1282
+ assert use_cache is None, "use_cache is not supported for now"
1283
+
1284
+ assert input_ids[0, -1] != self.sep_token_id, "remove the last token if it is a sep token"
1285
+
1286
+ batch_size, seq_length = input_ids.shape
1287
+ input_ids = torch.cat(
1288
+ [
1289
+ input_ids,
1290
+ torch.full((batch_size, self.n_masks), self.mask_token_id, device=input_ids.device),
1291
+ torch.full((batch_size, 1), self.sep_token_id, device=input_ids.device)
1292
+ ],
1293
+ dim=-1
1294
+ )
1295
+ attention_mask = torch.cat(
1296
+ [
1297
+ attention_mask,
1298
+ torch.full((batch_size, self.n_masks + 1), attention_mask[0, -1], device=attention_mask.device),
1299
+ ],
1300
+ dim=-1
1301
+ )
1302
+ position_ids = torch.cat(
1303
+ [
1304
+ position_ids,
1305
+ torch.arange(0, self.n_masks + 1, device=position_ids.device).unsqueeze(0) + position_ids[:, -1:],
1306
+ ],
1307
+ dim=-1
1308
+ )
1309
+
1310
+ outputs = super().forward(
1311
+ input_ids,
1312
+ attention_mask=attention_mask,
1313
+ token_type_ids=token_type_ids,
1314
+ position_ids=position_ids,
1315
+ inputs_embeds=inputs_embeds,
1316
+ output_attentions=output_attentions,
1317
+ output_hidden_states=output_hidden_states,
1318
+ return_dict=return_dict,
1319
+ )
1320
+
1321
+ # shift the outputs and skip excess masks
1322
+ logits = outputs.logits[:, 1:-(self.n_masks), :].contiguous()
1323
+
1324
+ loss = None
1325
+ if labels is not None:
1326
+ pass
1327
+
1328
+ if not return_dict:
1329
+ output = (logits,) + outputs[1:]
1330
+ return (loss,) + output if loss is not None else output
1331
+
1332
+ return CausalLMOutput(
1333
+ loss=loss,
1334
+ logits=logits,
1335
+ hidden_states=outputs.hidden_states,
1336
+ attentions=outputs.attentions,
1337
+ )
1338
+
1339
+
1340
+ # Copied from transformers.models.deberta.modeling_deberta.DebertaPredictionHeadTransform with Deberta->DebertaV2
1341
+ class DebertaV2PredictionHeadTransform(nn.Module):
1342
+ def __init__(self, config):
1343
+ super().__init__()
1344
+ self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
1345
+
1346
+ self.dense = nn.Linear(config.hidden_size, self.embedding_size)
1347
+ if isinstance(config.hidden_act, str):
1348
+ self.transform_act_fn = ACT2FN[config.hidden_act]
1349
+ else:
1350
+ self.transform_act_fn = config.hidden_act
1351
+ self.LayerNorm = nn.LayerNorm(self.embedding_size, eps=config.layer_norm_eps)
1352
+
1353
+ def forward(self, hidden_states):
1354
+ hidden_states = self.dense(hidden_states)
1355
+ hidden_states = self.transform_act_fn(hidden_states)
1356
+ hidden_states = self.LayerNorm(hidden_states)
1357
+ return hidden_states
1358
+
1359
+
1360
+ # Copied from transformers.models.deberta.modeling_deberta.DebertaLMPredictionHead with Deberta->DebertaV2
1361
+ class DebertaV2LMPredictionHead(nn.Module):
1362
+ def __init__(self, config):
1363
+ super().__init__()
1364
+ self.transform = DebertaV2PredictionHeadTransform(config)
1365
+
1366
+ self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
1367
+ # The output weights are the same as the input embeddings, but there is
1368
+ # an output-only bias for each token.
1369
+ self.decoder = nn.Linear(self.embedding_size, config.vocab_size, bias=True)
1370
+
1371
+ #self.bias = nn.Parameter(torch.zeros(config.vocab_size))
1372
+
1373
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
1374
+ #self.decoder.bias = self.bias
1375
+
1376
+ def forward(self, hidden_states):
1377
+ hidden_states = self.transform(hidden_states)
1378
+ hidden_states = self.decoder(hidden_states)
1379
+ return hidden_states
1380
+
1381
+
1382
+ # copied from transformers.models.bert.BertOnlyMLMHead with bert -> deberta
1383
+ class DebertaV2OnlyMLMHead(nn.Module):
1384
+ def __init__(self, config):
1385
+ super().__init__()
1386
+ self.predictions = DebertaV2LMPredictionHead(config)
1387
+
1388
+ def forward(self, sequence_output):
1389
+ prediction_scores = self.predictions(sequence_output)
1390
+ return prediction_scores
1391
+
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1b1b0c5fcd18795a94c7bedd61d0ba84b3682444e36beedf88aa118df4ec99b
3
+ size 3135918282
spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5598d5e96f339a8d980c15f9afd405a2e5e1be7db41de3ed13b0f03fac1e8c17
3
+ size 2447305
tokenizer_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "do_lower_case": false,
3
+ "vocab_type": "spm"
4
+ }