ltg
/

ltgoslo commited on
Commit
6196e7b
1 Parent(s): c7656cd
README.md CHANGED
@@ -1,3 +1,100 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: cc-by-sa-4.0
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - text2text-generation
4
+ - definition-modeling
5
+ metrics:
6
+ - rouge, bleu, bert-f1
7
+ model-index:
8
+ - name: flan-t5-definition-en-base
9
+ results: []
10
+ language:
11
+ - en
12
+ widget:
13
+ - text: "He ate a sweet apple. What is the definition of apple?"
14
+ example_title: "Definition generation"
15
+ - text: "The paper contains a number of original ideas about color perception. What is the definition of original?"
16
+ example_title: "Definition generation"
17
  license: cc-by-sa-4.0
18
+ datasets:
19
+ - marksverdhei/wordnet-definitions-en-2021
20
  ---
21
+
22
+ # FLAN-T5-Definition Base
23
+
24
+ This model is a version of [FLAN-T5 Base](https://huggingface.co/google/flan-t5-base) finetuned on a dataset of English definitions and usage examples.
25
+
26
+ It generates definitions of English words in context.
27
+ Its input is the usage example and the instruction question "What is the definiton of TARGET_WORD?"
28
+
29
+ ## Model description
30
+
31
+ See details in the paper `Interpretable Word Sense Representations via Definition Generation: The Case of Semantic Change Analysis` (ACL'2023) by Mario Giulianelli, Iris Luden, Raquel Fernandez and Andrey Kutuzov.
32
+
33
+ ## Intended uses & limitations
34
+
35
+ The model is intended for research purposes, as a source of contextualized dictionary-like lexical definitions.
36
+
37
+ The fine-tuning datasets were limited to English.
38
+ Although the original FLAN-T5 is a multilingual model, we did not thoroughly evaluate its ability to generate definitions in languages other than English.
39
+
40
+ Generated definitions can contain all sorts of biases and stereotypes, stemming from the underlying language model.
41
+
42
+ ## Training and evaluation data
43
+
44
+ Three datasets were used to fine-tune the model:
45
+ - *WordNet* ([Ishiwatari et al., NAACL 2019](https://aclanthology.org/N19-1350/)), also [available on HF](https://huggingface.co/datasets/marksverdhei/wordnet-definitions-en-2021)
46
+ - *Oxford dictionary or CHA* ([Gadetsky et al., ACL 2018](https://aclanthology.org/P18-2043/))
47
+ - English subset of *CodWoE* ([Mickus et al., SemEval 2022](https://aclanthology.org/2022.semeval-1.1/))
48
+
49
+ FLAN-T5-Definition Base achieves the following results on the WordNet test set:
50
+ - ROUGE-L: 23.19
51
+ - BLEU: 8.80
52
+ - BERT-F1: 87.49
53
+
54
+ FLAN-T5-Definition Base achieves the following results on the Oxford dictionary test set:
55
+ - ROUGE-L: 17.25
56
+ - BLEU: 3.71
57
+ - BERT-F1: 86.44
58
+
59
+
60
+ ## Training procedure
61
+ FLAN-T5 Base was fine-tuned in a sequence-to-sequence mode on examples of contextualized dictionary definitions.
62
+
63
+ ### Training hyperparameters
64
+
65
+ The following hyperparameters were used during training:
66
+ - learning_rate: 5e-05
67
+ - train_batch_size: 64
68
+ - eval_batch_size: 64
69
+ - seed: 42
70
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
71
+ - lr_scheduler_type: linear
72
+ - num_epochs: 15.0
73
+
74
+ ### Training results
75
+
76
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
77
+ |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
78
+ | 2.5645 | 1.0 | 2740 | 2.2535 | 24.4437 | 6.4189 | 22.7949 | 22.7909 | 11.4969 |
79
+ | 2.3501 | 2.0 | 5480 | 2.1642 | 25.6642 | 7.289 | 23.8689 | 23.8749 | 11.7150 |
80
+ | 2.2516 | 3.0 | 8220 | 2.1116 | 26.4562 | 7.8955 | 24.6275 | 24.6376 | 11.7441 |
81
+ | 2.1806 | 4.0 | 10960 | 2.0737 | 27.0392 | 8.2393 | 25.1555 | 25.1641 | 11.7930 |
82
+ | 2.1233 | 5.0 | 13700 | 2.0460 | 27.2709 | 8.4244 | 25.3847 | 25.4003 | 11.9014 |
83
+ | 2.0765 | 6.0 | 16440 | 2.0236 | 27.5456 | 8.6096 | 25.6321 | 25.6462 | 11.8113 |
84
+ | 2.0371 | 7.0 | 19180 | 2.0047 | 27.7209 | 8.7277 | 25.7871 | 25.8084 | 11.6875 |
85
+ | 2.0036 | 8.0 | 21920 | 1.9918 | 28.0431 | 8.9863 | 26.1072 | 26.1198 | 11.5487 |
86
+ | 1.9752 | 9.0 | 24660 | 1.9788 | 28.1807 | 9.0219 | 26.1692 | 26.1886 | 11.7939 |
87
+ | 1.9513 | 10.0 | 27400 | 1.9702 | 28.3204 | 9.1572 | 26.2955 | 26.3029 | 11.5936 |
88
+ | 1.9309 | 11.0 | 30140 | 1.9640 | 28.4289 | 9.2845 | 26.4006 | 26.418 | 11.8371 |
89
+ | 1.9144 | 12.0 | 32880 | 1.9571 | 28.4504 | 9.3406 | 26.4273 | 26.4384 | 11.6201 |
90
+ | 1.9013 | 13.0 | 35620 | 1.9544 | 28.6319 | 9.3682 | 26.605 | 26.613 | 11.7067 |
91
+ | 1.8914 | 14.0 | 38360 | 1.9512 | 28.6435 | 9.3976 | 26.5839 | 26.5918 | 11.7307 |
92
+ | 1.8866 | 15.0 | 41100 | 1.9509 | 28.6111 | 9.3857 | 26.551 | 26.5648 | 11.7470 |
93
+
94
+
95
+ ### Framework versions
96
+
97
+ - Transformers 4.24.0
98
+ - Pytorch 1.11.0
99
+ - Datasets 2.3.2
100
+ - Tokenizers 0.12.1
all_results.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 15.0,
3
+ "eval_gen_len": 13.420898297811473,
4
+ "eval_loss": 1.9511938095092773,
5
+ "eval_rouge1": 28.6545,
6
+ "eval_rouge2": 9.4088,
7
+ "eval_rougeL": 26.5273,
8
+ "eval_rougeLsum": 26.5517,
9
+ "eval_runtime": 179.6643,
10
+ "eval_samples": 13982,
11
+ "eval_samples_per_second": 77.823,
12
+ "eval_steps_per_second": 1.219,
13
+ "train_loss": 2.069233327155566,
14
+ "train_runtime": 14173.3385,
15
+ "train_samples": 175332,
16
+ "train_samples_per_second": 185.558,
17
+ "train_steps_per_second": 2.9
18
+ }
config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/fp/projects01/ec30/models/flan-t5-base/",
3
+ "architectures": [
4
+ "T5ForConditionalGeneration"
5
+ ],
6
+ "d_ff": 2048,
7
+ "d_kv": 64,
8
+ "d_model": 768,
9
+ "decoder_start_token_id": 0,
10
+ "dense_act_fn": "gelu",
11
+ "dropout_rate": 0.1,
12
+ "eos_token_id": 1,
13
+ "feed_forward_proj": "gelu",
14
+ "initializer_factor": 1.0,
15
+ "is_encoder_decoder": true,
16
+ "is_gated_act": true,
17
+ "layer_norm_epsilon": 1e-06,
18
+ "model_type": "t5",
19
+ "n_positions": 512,
20
+ "num_decoder_layers": 12,
21
+ "num_heads": 12,
22
+ "num_layers": 12,
23
+ "output_past": true,
24
+ "pad_token_id": 0,
25
+ "relative_attention_max_distance": 128,
26
+ "relative_attention_num_buckets": 32,
27
+ "task_specific_params": {
28
+ "summarization": {
29
+ "early_stopping": true,
30
+ "length_penalty": 2.0,
31
+ "max_length": 200,
32
+ "min_length": 30,
33
+ "no_repeat_ngram_size": 3,
34
+ "num_beams": 4,
35
+ "prefix": "summarize: "
36
+ },
37
+ "translation_en_to_de": {
38
+ "early_stopping": true,
39
+ "max_length": 300,
40
+ "num_beams": 4,
41
+ "prefix": "translate English to German: "
42
+ },
43
+ "translation_en_to_fr": {
44
+ "early_stopping": true,
45
+ "max_length": 300,
46
+ "num_beams": 4,
47
+ "prefix": "translate English to French: "
48
+ },
49
+ "translation_en_to_ro": {
50
+ "early_stopping": true,
51
+ "max_length": 300,
52
+ "num_beams": 4,
53
+ "prefix": "translate English to Romanian: "
54
+ }
55
+ },
56
+ "tie_word_embeddings": false,
57
+ "torch_dtype": "float32",
58
+ "transformers_version": "4.24.0",
59
+ "use_cache": true,
60
+ "vocab_size": 32128
61
+ }
eval_results.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 15.0,
3
+ "eval_gen_len": 13.420898297811473,
4
+ "eval_loss": 1.9511938095092773,
5
+ "eval_rouge1": 28.6545,
6
+ "eval_rouge2": 9.4088,
7
+ "eval_rougeL": 26.5273,
8
+ "eval_rougeLsum": 26.5517,
9
+ "eval_runtime": 179.6643,
10
+ "eval_samples": 13982,
11
+ "eval_samples_per_second": 77.823,
12
+ "eval_steps_per_second": 1.219
13
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98e65bae9aea15a2fbbc9fefd7576118c862d0627401681c2fece07045cf2754
3
+ size 990406605
special_tokens_map.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<extra_id_0>",
4
+ "<extra_id_1>",
5
+ "<extra_id_2>",
6
+ "<extra_id_3>",
7
+ "<extra_id_4>",
8
+ "<extra_id_5>",
9
+ "<extra_id_6>",
10
+ "<extra_id_7>",
11
+ "<extra_id_8>",
12
+ "<extra_id_9>",
13
+ "<extra_id_10>",
14
+ "<extra_id_11>",
15
+ "<extra_id_12>",
16
+ "<extra_id_13>",
17
+ "<extra_id_14>",
18
+ "<extra_id_15>",
19
+ "<extra_id_16>",
20
+ "<extra_id_17>",
21
+ "<extra_id_18>",
22
+ "<extra_id_19>",
23
+ "<extra_id_20>",
24
+ "<extra_id_21>",
25
+ "<extra_id_22>",
26
+ "<extra_id_23>",
27
+ "<extra_id_24>",
28
+ "<extra_id_25>",
29
+ "<extra_id_26>",
30
+ "<extra_id_27>",
31
+ "<extra_id_28>",
32
+ "<extra_id_29>",
33
+ "<extra_id_30>",
34
+ "<extra_id_31>",
35
+ "<extra_id_32>",
36
+ "<extra_id_33>",
37
+ "<extra_id_34>",
38
+ "<extra_id_35>",
39
+ "<extra_id_36>",
40
+ "<extra_id_37>",
41
+ "<extra_id_38>",
42
+ "<extra_id_39>",
43
+ "<extra_id_40>",
44
+ "<extra_id_41>",
45
+ "<extra_id_42>",
46
+ "<extra_id_43>",
47
+ "<extra_id_44>",
48
+ "<extra_id_45>",
49
+ "<extra_id_46>",
50
+ "<extra_id_47>",
51
+ "<extra_id_48>",
52
+ "<extra_id_49>",
53
+ "<extra_id_50>",
54
+ "<extra_id_51>",
55
+ "<extra_id_52>",
56
+ "<extra_id_53>",
57
+ "<extra_id_54>",
58
+ "<extra_id_55>",
59
+ "<extra_id_56>",
60
+ "<extra_id_57>",
61
+ "<extra_id_58>",
62
+ "<extra_id_59>",
63
+ "<extra_id_60>",
64
+ "<extra_id_61>",
65
+ "<extra_id_62>",
66
+ "<extra_id_63>",
67
+ "<extra_id_64>",
68
+ "<extra_id_65>",
69
+ "<extra_id_66>",
70
+ "<extra_id_67>",
71
+ "<extra_id_68>",
72
+ "<extra_id_69>",
73
+ "<extra_id_70>",
74
+ "<extra_id_71>",
75
+ "<extra_id_72>",
76
+ "<extra_id_73>",
77
+ "<extra_id_74>",
78
+ "<extra_id_75>",
79
+ "<extra_id_76>",
80
+ "<extra_id_77>",
81
+ "<extra_id_78>",
82
+ "<extra_id_79>",
83
+ "<extra_id_80>",
84
+ "<extra_id_81>",
85
+ "<extra_id_82>",
86
+ "<extra_id_83>",
87
+ "<extra_id_84>",
88
+ "<extra_id_85>",
89
+ "<extra_id_86>",
90
+ "<extra_id_87>",
91
+ "<extra_id_88>",
92
+ "<extra_id_89>",
93
+ "<extra_id_90>",
94
+ "<extra_id_91>",
95
+ "<extra_id_92>",
96
+ "<extra_id_93>",
97
+ "<extra_id_94>",
98
+ "<extra_id_95>",
99
+ "<extra_id_96>",
100
+ "<extra_id_97>",
101
+ "<extra_id_98>",
102
+ "<extra_id_99>"
103
+ ],
104
+ "eos_token": "</s>",
105
+ "pad_token": "<pad>",
106
+ "unk_token": "<unk>"
107
+ }
spiece.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d60acb128cf7b7f2536e8f38a5b18a05535c9e14c7a355904270e15b0945ea86
3
+ size 791656
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<extra_id_0>",
4
+ "<extra_id_1>",
5
+ "<extra_id_2>",
6
+ "<extra_id_3>",
7
+ "<extra_id_4>",
8
+ "<extra_id_5>",
9
+ "<extra_id_6>",
10
+ "<extra_id_7>",
11
+ "<extra_id_8>",
12
+ "<extra_id_9>",
13
+ "<extra_id_10>",
14
+ "<extra_id_11>",
15
+ "<extra_id_12>",
16
+ "<extra_id_13>",
17
+ "<extra_id_14>",
18
+ "<extra_id_15>",
19
+ "<extra_id_16>",
20
+ "<extra_id_17>",
21
+ "<extra_id_18>",
22
+ "<extra_id_19>",
23
+ "<extra_id_20>",
24
+ "<extra_id_21>",
25
+ "<extra_id_22>",
26
+ "<extra_id_23>",
27
+ "<extra_id_24>",
28
+ "<extra_id_25>",
29
+ "<extra_id_26>",
30
+ "<extra_id_27>",
31
+ "<extra_id_28>",
32
+ "<extra_id_29>",
33
+ "<extra_id_30>",
34
+ "<extra_id_31>",
35
+ "<extra_id_32>",
36
+ "<extra_id_33>",
37
+ "<extra_id_34>",
38
+ "<extra_id_35>",
39
+ "<extra_id_36>",
40
+ "<extra_id_37>",
41
+ "<extra_id_38>",
42
+ "<extra_id_39>",
43
+ "<extra_id_40>",
44
+ "<extra_id_41>",
45
+ "<extra_id_42>",
46
+ "<extra_id_43>",
47
+ "<extra_id_44>",
48
+ "<extra_id_45>",
49
+ "<extra_id_46>",
50
+ "<extra_id_47>",
51
+ "<extra_id_48>",
52
+ "<extra_id_49>",
53
+ "<extra_id_50>",
54
+ "<extra_id_51>",
55
+ "<extra_id_52>",
56
+ "<extra_id_53>",
57
+ "<extra_id_54>",
58
+ "<extra_id_55>",
59
+ "<extra_id_56>",
60
+ "<extra_id_57>",
61
+ "<extra_id_58>",
62
+ "<extra_id_59>",
63
+ "<extra_id_60>",
64
+ "<extra_id_61>",
65
+ "<extra_id_62>",
66
+ "<extra_id_63>",
67
+ "<extra_id_64>",
68
+ "<extra_id_65>",
69
+ "<extra_id_66>",
70
+ "<extra_id_67>",
71
+ "<extra_id_68>",
72
+ "<extra_id_69>",
73
+ "<extra_id_70>",
74
+ "<extra_id_71>",
75
+ "<extra_id_72>",
76
+ "<extra_id_73>",
77
+ "<extra_id_74>",
78
+ "<extra_id_75>",
79
+ "<extra_id_76>",
80
+ "<extra_id_77>",
81
+ "<extra_id_78>",
82
+ "<extra_id_79>",
83
+ "<extra_id_80>",
84
+ "<extra_id_81>",
85
+ "<extra_id_82>",
86
+ "<extra_id_83>",
87
+ "<extra_id_84>",
88
+ "<extra_id_85>",
89
+ "<extra_id_86>",
90
+ "<extra_id_87>",
91
+ "<extra_id_88>",
92
+ "<extra_id_89>",
93
+ "<extra_id_90>",
94
+ "<extra_id_91>",
95
+ "<extra_id_92>",
96
+ "<extra_id_93>",
97
+ "<extra_id_94>",
98
+ "<extra_id_95>",
99
+ "<extra_id_96>",
100
+ "<extra_id_97>",
101
+ "<extra_id_98>",
102
+ "<extra_id_99>"
103
+ ],
104
+ "eos_token": "</s>",
105
+ "extra_ids": 100,
106
+ "model_max_length": 512,
107
+ "name_or_path": "/fp/projects01/ec30/models/flan-t5-base/",
108
+ "pad_token": "<pad>",
109
+ "sp_model_kwargs": {},
110
+ "special_tokens_map_file": "/home/younes_huggingface_co/.cache/huggingface/hub/models--google--t5-v1_1-base/snapshots/650d7745bf1e502d6949b22cc19155cd656d3d4e/special_tokens_map.json",
111
+ "tokenizer_class": "T5Tokenizer",
112
+ "unk_token": "<unk>"
113
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 15.0,
3
+ "train_loss": 2.069233327155566,
4
+ "train_runtime": 14173.3385,
5
+ "train_samples": 175332,
6
+ "train_samples_per_second": 185.558,
7
+ "train_steps_per_second": 2.9
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,310 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 28.6435,
3
+ "best_model_checkpoint": "base_ox-wn_cod_15ep/checkpoint-38360",
4
+ "epoch": 15.0,
5
+ "global_step": 41100,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 1.0,
12
+ "learning_rate": 4.666666666666667e-05,
13
+ "loss": 2.5645,
14
+ "step": 2740
15
+ },
16
+ {
17
+ "epoch": 1.0,
18
+ "eval_gen_len": 11.496853096838793,
19
+ "eval_loss": 2.2535109519958496,
20
+ "eval_rouge1": 24.4437,
21
+ "eval_rouge2": 6.4189,
22
+ "eval_rougeL": 22.7949,
23
+ "eval_rougeLsum": 22.7909,
24
+ "eval_runtime": 92.2279,
25
+ "eval_samples_per_second": 151.603,
26
+ "eval_steps_per_second": 2.375,
27
+ "step": 2740
28
+ },
29
+ {
30
+ "epoch": 2.0,
31
+ "learning_rate": 4.3333333333333334e-05,
32
+ "loss": 2.3501,
33
+ "step": 5480
34
+ },
35
+ {
36
+ "epoch": 2.0,
37
+ "eval_gen_len": 11.71499070233157,
38
+ "eval_loss": 2.1641664505004883,
39
+ "eval_rouge1": 25.6642,
40
+ "eval_rouge2": 7.289,
41
+ "eval_rougeL": 23.8689,
42
+ "eval_rougeLsum": 23.8749,
43
+ "eval_runtime": 92.3758,
44
+ "eval_samples_per_second": 151.36,
45
+ "eval_steps_per_second": 2.371,
46
+ "step": 5480
47
+ },
48
+ {
49
+ "epoch": 3.0,
50
+ "learning_rate": 4e-05,
51
+ "loss": 2.2516,
52
+ "step": 8220
53
+ },
54
+ {
55
+ "epoch": 3.0,
56
+ "eval_gen_len": 11.744099556572737,
57
+ "eval_loss": 2.1115779876708984,
58
+ "eval_rouge1": 26.4562,
59
+ "eval_rouge2": 7.8955,
60
+ "eval_rougeL": 24.6275,
61
+ "eval_rougeLsum": 24.6376,
62
+ "eval_runtime": 91.9643,
63
+ "eval_samples_per_second": 152.037,
64
+ "eval_steps_per_second": 2.381,
65
+ "step": 8220
66
+ },
67
+ {
68
+ "epoch": 4.0,
69
+ "learning_rate": 3.6666666666666666e-05,
70
+ "loss": 2.1806,
71
+ "step": 10960
72
+ },
73
+ {
74
+ "epoch": 4.0,
75
+ "eval_gen_len": 11.793019596624232,
76
+ "eval_loss": 2.073715925216675,
77
+ "eval_rouge1": 27.0392,
78
+ "eval_rouge2": 8.2393,
79
+ "eval_rougeL": 25.1555,
80
+ "eval_rougeLsum": 25.1641,
81
+ "eval_runtime": 92.1881,
82
+ "eval_samples_per_second": 151.668,
83
+ "eval_steps_per_second": 2.376,
84
+ "step": 10960
85
+ },
86
+ {
87
+ "epoch": 5.0,
88
+ "learning_rate": 3.3333333333333335e-05,
89
+ "loss": 2.1233,
90
+ "step": 13700
91
+ },
92
+ {
93
+ "epoch": 5.0,
94
+ "eval_gen_len": 11.901444714633099,
95
+ "eval_loss": 2.0459506511688232,
96
+ "eval_rouge1": 27.2709,
97
+ "eval_rouge2": 8.4244,
98
+ "eval_rougeL": 25.3847,
99
+ "eval_rougeLsum": 25.4003,
100
+ "eval_runtime": 92.1849,
101
+ "eval_samples_per_second": 151.674,
102
+ "eval_steps_per_second": 2.376,
103
+ "step": 13700
104
+ },
105
+ {
106
+ "epoch": 6.0,
107
+ "learning_rate": 3e-05,
108
+ "loss": 2.0765,
109
+ "step": 16440
110
+ },
111
+ {
112
+ "epoch": 6.0,
113
+ "eval_gen_len": 11.811257330853955,
114
+ "eval_loss": 2.0235939025878906,
115
+ "eval_rouge1": 27.5456,
116
+ "eval_rouge2": 8.6096,
117
+ "eval_rougeL": 25.6321,
118
+ "eval_rougeLsum": 25.6462,
119
+ "eval_runtime": 92.2077,
120
+ "eval_samples_per_second": 151.636,
121
+ "eval_steps_per_second": 2.375,
122
+ "step": 16440
123
+ },
124
+ {
125
+ "epoch": 7.0,
126
+ "learning_rate": 2.6666666666666667e-05,
127
+ "loss": 2.0371,
128
+ "step": 19180
129
+ },
130
+ {
131
+ "epoch": 7.0,
132
+ "eval_gen_len": 11.687455299671006,
133
+ "eval_loss": 2.004668951034546,
134
+ "eval_rouge1": 27.7209,
135
+ "eval_rouge2": 8.7277,
136
+ "eval_rougeL": 25.7871,
137
+ "eval_rougeLsum": 25.8084,
138
+ "eval_runtime": 92.3796,
139
+ "eval_samples_per_second": 151.354,
140
+ "eval_steps_per_second": 2.371,
141
+ "step": 19180
142
+ },
143
+ {
144
+ "epoch": 8.0,
145
+ "learning_rate": 2.3333333333333336e-05,
146
+ "loss": 2.0036,
147
+ "step": 21920
148
+ },
149
+ {
150
+ "epoch": 8.0,
151
+ "eval_gen_len": 11.548705478472321,
152
+ "eval_loss": 1.9917967319488525,
153
+ "eval_rouge1": 28.0431,
154
+ "eval_rouge2": 8.9863,
155
+ "eval_rougeL": 26.1072,
156
+ "eval_rougeLsum": 26.1198,
157
+ "eval_runtime": 92.2225,
158
+ "eval_samples_per_second": 151.612,
159
+ "eval_steps_per_second": 2.375,
160
+ "step": 21920
161
+ },
162
+ {
163
+ "epoch": 9.0,
164
+ "learning_rate": 2e-05,
165
+ "loss": 1.9752,
166
+ "step": 24660
167
+ },
168
+ {
169
+ "epoch": 9.0,
170
+ "eval_gen_len": 11.793949363467314,
171
+ "eval_loss": 1.978798747062683,
172
+ "eval_rouge1": 28.1807,
173
+ "eval_rouge2": 9.0219,
174
+ "eval_rougeL": 26.1692,
175
+ "eval_rougeLsum": 26.1886,
176
+ "eval_runtime": 92.3313,
177
+ "eval_samples_per_second": 151.433,
178
+ "eval_steps_per_second": 2.372,
179
+ "step": 24660
180
+ },
181
+ {
182
+ "epoch": 10.0,
183
+ "learning_rate": 1.6666666666666667e-05,
184
+ "loss": 1.9513,
185
+ "step": 27400
186
+ },
187
+ {
188
+ "epoch": 10.0,
189
+ "eval_gen_len": 11.593620369045917,
190
+ "eval_loss": 1.9701664447784424,
191
+ "eval_rouge1": 28.3204,
192
+ "eval_rouge2": 9.1572,
193
+ "eval_rougeL": 26.2955,
194
+ "eval_rougeLsum": 26.3029,
195
+ "eval_runtime": 92.353,
196
+ "eval_samples_per_second": 151.397,
197
+ "eval_steps_per_second": 2.371,
198
+ "step": 27400
199
+ },
200
+ {
201
+ "epoch": 11.0,
202
+ "learning_rate": 1.3333333333333333e-05,
203
+ "loss": 1.9309,
204
+ "step": 30140
205
+ },
206
+ {
207
+ "epoch": 11.0,
208
+ "eval_gen_len": 11.837076240881133,
209
+ "eval_loss": 1.9640249013900757,
210
+ "eval_rouge1": 28.4289,
211
+ "eval_rouge2": 9.2845,
212
+ "eval_rougeL": 26.4006,
213
+ "eval_rougeLsum": 26.418,
214
+ "eval_runtime": 92.2786,
215
+ "eval_samples_per_second": 151.519,
216
+ "eval_steps_per_second": 2.373,
217
+ "step": 30140
218
+ },
219
+ {
220
+ "epoch": 12.0,
221
+ "learning_rate": 1e-05,
222
+ "loss": 1.9144,
223
+ "step": 32880
224
+ },
225
+ {
226
+ "epoch": 12.0,
227
+ "eval_gen_len": 11.620082963810614,
228
+ "eval_loss": 1.9570931196212769,
229
+ "eval_rouge1": 28.4504,
230
+ "eval_rouge2": 9.3406,
231
+ "eval_rougeL": 26.4273,
232
+ "eval_rougeLsum": 26.4384,
233
+ "eval_runtime": 143.3751,
234
+ "eval_samples_per_second": 97.52,
235
+ "eval_steps_per_second": 1.527,
236
+ "step": 32880
237
+ },
238
+ {
239
+ "epoch": 13.0,
240
+ "learning_rate": 6.666666666666667e-06,
241
+ "loss": 1.9013,
242
+ "step": 35620
243
+ },
244
+ {
245
+ "epoch": 13.0,
246
+ "eval_gen_len": 11.706694321270204,
247
+ "eval_loss": 1.954399824142456,
248
+ "eval_rouge1": 28.6319,
249
+ "eval_rouge2": 9.3682,
250
+ "eval_rougeL": 26.605,
251
+ "eval_rougeLsum": 26.613,
252
+ "eval_runtime": 92.2917,
253
+ "eval_samples_per_second": 151.498,
254
+ "eval_steps_per_second": 2.373,
255
+ "step": 35620
256
+ },
257
+ {
258
+ "epoch": 14.0,
259
+ "learning_rate": 3.3333333333333333e-06,
260
+ "loss": 1.8914,
261
+ "step": 38360
262
+ },
263
+ {
264
+ "epoch": 14.0,
265
+ "eval_gen_len": 11.730653697611215,
266
+ "eval_loss": 1.9511938095092773,
267
+ "eval_rouge1": 28.6435,
268
+ "eval_rouge2": 9.3976,
269
+ "eval_rougeL": 26.5839,
270
+ "eval_rougeLsum": 26.5918,
271
+ "eval_runtime": 92.0528,
272
+ "eval_samples_per_second": 151.891,
273
+ "eval_steps_per_second": 2.379,
274
+ "step": 38360
275
+ },
276
+ {
277
+ "epoch": 15.0,
278
+ "learning_rate": 0.0,
279
+ "loss": 1.8866,
280
+ "step": 41100
281
+ },
282
+ {
283
+ "epoch": 15.0,
284
+ "eval_gen_len": 11.74696037762838,
285
+ "eval_loss": 1.9508894681930542,
286
+ "eval_rouge1": 28.6111,
287
+ "eval_rouge2": 9.3857,
288
+ "eval_rougeL": 26.551,
289
+ "eval_rougeLsum": 26.5648,
290
+ "eval_runtime": 91.9698,
291
+ "eval_samples_per_second": 152.028,
292
+ "eval_steps_per_second": 2.381,
293
+ "step": 41100
294
+ },
295
+ {
296
+ "epoch": 15.0,
297
+ "step": 41100,
298
+ "total_flos": 4.436322961707786e+17,
299
+ "train_loss": 2.069233327155566,
300
+ "train_runtime": 14173.3385,
301
+ "train_samples_per_second": 185.558,
302
+ "train_steps_per_second": 2.9
303
+ }
304
+ ],
305
+ "max_steps": 41100,
306
+ "num_train_epochs": 15,
307
+ "total_flos": 4.436322961707786e+17,
308
+ "trial_name": null,
309
+ "trial_params": null
310
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:296329d1d5b8669d15a9afaf3f0ba0f6dc6c566249f51a2f5714bab6a5fedb03
3
+ size 3503