ltg
/

ltgoslo commited on
Commit
e0e38cf
1 Parent(s): 2001a9a

Large model

Browse files
README.md CHANGED
@@ -1,3 +1,113 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: cc-by-sa-4.0
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - text2text-generation
4
+ - definition-modeling
5
+ metrics:
6
+ - rouge, bleu, bert-f1
7
+ model-index:
8
+ - name: flan-t5-definition-en-large
9
+ results: []
10
+ language:
11
+ - en
12
+ widget:
13
+ - text: "He ate a sweet apple. What is the definition of apple?"
14
+ example_title: "Definition generation"
15
+ - text: "The paper contains a number of original ideas about color perception. What is the definition of original?"
16
+ example_title: "Definition generation"
17
  license: cc-by-sa-4.0
18
+ datasets:
19
+ - marksverdhei/wordnet-definitions-en-2021
20
  ---
21
+
22
+
23
+ # FLAN-T5-Definition Large
24
+
25
+ This model is a version of [FLAN-T5 Large](https://huggingface.co/google/flan-t5-large) finetuned on a dataset of English definitions and usage examples.
26
+
27
+ It generates definitions of English words in context.
28
+ Its input is the usage example and the instruction question "What is the definiton of TARGET_WORD?"
29
+
30
+ This project is a collaboration between the [Dialogue Modelling Group](https://dmg-illc.github.io/dmg/) at the University of Amsterdam
31
+ and the [Language Technology Group](https://www.mn.uio.no/ifi/english/research/groups/ltg/) at the University of Oslo.
32
+
33
+ ## Sizes:
34
+ - [FLAN-T5-Definition Base (250M parameters)](https://huggingface.co/ltg/flan-t5-definition-en-base)
35
+ - [FLAN-T5-Definition Large (780M parameters)](https://huggingface.co/ltg/flan-t5-definition-en-large)
36
+ - [FLAN-T5-Definition XL (3B parameters)](https://huggingface.co/ltg/flan-t5-definition-en-xl)
37
+
38
+ ## Model description
39
+
40
+ See details in the paper `Interpretable Word Sense Representations via Definition Generation: The Case of Semantic Change Analysis` (ACL'2023) by Mario Giulianelli, Iris Luden, Raquel Fernandez and Andrey Kutuzov.
41
+
42
+ ## Intended uses & limitations
43
+
44
+ The model is intended for research purposes, as a source of contextualized dictionary-like lexical definitions.
45
+
46
+ The fine-tuning datasets were limited to English.
47
+ Although the original FLAN-T5 is a multilingual model, we did not thoroughly evaluate its ability to generate definitions in languages other than English.
48
+
49
+ Generated definitions can contain all sorts of biases and stereotypes, stemming from the underlying language model.
50
+
51
+ ## Training and evaluation data
52
+
53
+ Three datasets were used to fine-tune the model:
54
+ - *WordNet* ([Ishiwatari et al., NAACL 2019](https://aclanthology.org/N19-1350/)), also [available on HF](https://huggingface.co/datasets/marksverdhei/wordnet-definitions-en-2021)
55
+ - *Oxford dictionary or CHA* ([Gadetsky et al., ACL 2018](https://aclanthology.org/P18-2043/))
56
+ - English subset of *CodWoE* ([Mickus et al., SemEval 2022](https://aclanthology.org/2022.semeval-1.1/))
57
+
58
+ FLAN-T5-Definition Large achieves the following results on the WordNet test set:
59
+ - BLEU: 14.37
60
+ - ROUGE-L: 33.74
61
+ - BERT-F1: 88.21
62
+
63
+ FLAN-T5-Definition Large achieves the following results on the Oxford dictionary test set:
64
+ - BLEU: 10.90
65
+ - ROUGE-L: 30.05
66
+ - BERT-F1: 87.44
67
+
68
+ ## Training procedure
69
+
70
+ FLAN-T5 Base was fine-tuned in a sequence-to-sequence mode on examples of contextualized dictionary definitions.
71
+
72
+ ### Training hyperparameters
73
+
74
+ The following hyperparameters were used during training:
75
+ - learning_rate: 5e-05
76
+ - train_batch_size: 8
77
+ - eval_batch_size: 16
78
+ - seed: 42
79
+ - distributed_type: multi-GPU
80
+ - num_devices: 8
81
+ - total_train_batch_size: 64
82
+ - total_eval_batch_size: 128
83
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
84
+ - lr_scheduler_type: linear
85
+ - num_epochs: 15.0
86
+
87
+ ### Training results
88
+
89
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
90
+ |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
91
+ | 2.1769 | 1.0 | 2740 | 1.9050 | 28.7222 | 9.1873 | 26.6888 | 26.6937 | 11.3429 |
92
+ | 1.9408 | 2.0 | 5480 | 1.8151 | 29.8799 | 10.2327 | 27.7947 | 27.8044 | 11.4165 |
93
+ | 1.8124 | 3.0 | 8220 | 1.7608 | 30.9845 | 10.9982 | 28.8059 | 28.8131 | 11.5310 |
94
+ | 1.7118 | 4.0 | 10960 | 1.7229 | 31.6943 | 11.7412 | 29.4967 | 29.5319 | 11.7037 |
95
+ | 1.6286 | 5.0 | 13700 | 1.6937 | 32.5839 | 12.2431 | 30.1799 | 30.206 | 11.7784 |
96
+ | 1.5597 | 6.0 | 16440 | 1.6748 | 32.9915 | 12.8514 | 30.7016 | 30.7145 | 11.5974 |
97
+ | 1.4982 | 7.0 | 19180 | 1.6578 | 33.2157 | 13.1389 | 30.9428 | 30.9519 | 11.3580 |
98
+ | 1.4468 | 8.0 | 21920 | 1.6473 | 33.6146 | 13.5922 | 31.3001 | 31.3235 | 11.5724 |
99
+ | 1.4022 | 9.0 | 24660 | 1.6384 | 34.1711 | 14.1117 | 31.7951 | 31.8066 | 11.7389 |
100
+ | 1.364 | 10.0 | 27400 | 1.6337 | 34.5489 | 14.5012 | 32.1329 | 32.1446 | 11.6659 |
101
+ | 1.3321 | 11.0 | 30140 | 1.6291 | 34.7133 | 14.7297 | 32.3042 | 32.314 | 11.8003 |
102
+ | 1.3054 | 12.0 | 32880 | 1.6267 | 34.9411 | 15.0282 | 32.5335 | 32.5451 | 11.7619 |
103
+ | 1.2845 | 13.0 | 35620 | 1.6262 | 35.1648 | 15.2154 | 32.7387 | 32.742 | 11.8317 |
104
+ | 1.2699 | 14.0 | 38360 | 1.6257 | 35.2849 | 15.3109 | 32.8508 | 32.853 | 11.8168 |
105
+ | 1.2595 | 15.0 | 41100 | 1.6273 | 35.2224 | 15.2781 | 32.7718 | 32.7826 | 11.7971 |
106
+
107
+
108
+ ### Framework versions
109
+
110
+ - Transformers 4.23.1
111
+ - Pytorch 1.12.1+rocm5.1.1
112
+ - Datasets 2.4.0
113
+ - Tokenizers 0.12.1
all_results.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 15.0,
3
+ "eval_gen_len": 13.192962380203118,
4
+ "eval_loss": 1.6257190704345703,
5
+ "eval_rouge1": 35.3248,
6
+ "eval_rouge2": 15.339,
7
+ "eval_rougeL": 32.8229,
8
+ "eval_rougeLsum": 32.8352,
9
+ "eval_runtime": 185.6331,
10
+ "eval_samples": 13982,
11
+ "eval_samples_per_second": 75.321,
12
+ "eval_steps_per_second": 0.593,
13
+ "train_loss": 1.5328590292826185,
14
+ "train_runtime": 18417.6233,
15
+ "train_samples": 175332,
16
+ "train_samples_per_second": 142.797,
17
+ "train_steps_per_second": 2.232
18
+ }
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "flan-t5-large",
3
+ "architectures": [
4
+ "T5ForConditionalGeneration"
5
+ ],
6
+ "d_ff": 2816,
7
+ "d_kv": 64,
8
+ "d_model": 1024,
9
+ "decoder_start_token_id": 0,
10
+ "dense_act_fn": "gelu_new",
11
+ "dropout_rate": 0.1,
12
+ "eos_token_id": 1,
13
+ "feed_forward_proj": "gated-gelu",
14
+ "initializer_factor": 1.0,
15
+ "is_encoder_decoder": true,
16
+ "is_gated_act": true,
17
+ "layer_norm_epsilon": 1e-06,
18
+ "model_type": "t5",
19
+ "n_positions": 512,
20
+ "num_decoder_layers": 24,
21
+ "num_heads": 16,
22
+ "num_layers": 24,
23
+ "output_past": true,
24
+ "pad_token_id": 0,
25
+ "relative_attention_max_distance": 128,
26
+ "relative_attention_num_buckets": 32,
27
+ "tie_word_embeddings": false,
28
+ "torch_dtype": "float32",
29
+ "transformers_version": "4.23.1",
30
+ "use_cache": true,
31
+ "vocab_size": 32128
32
+ }
eval_results.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 15.0,
3
+ "eval_gen_len": 13.192962380203118,
4
+ "eval_loss": 1.6257190704345703,
5
+ "eval_rouge1": 35.3248,
6
+ "eval_rouge2": 15.339,
7
+ "eval_rougeL": 32.8229,
8
+ "eval_rougeLsum": 32.8352,
9
+ "eval_runtime": 185.6331,
10
+ "eval_samples": 13982,
11
+ "eval_samples_per_second": 75.321,
12
+ "eval_steps_per_second": 0.593
13
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5c58c055ef824890faf13414167422556dc09e5811111f79eaf259ab7666ebd
3
+ size 3132789733
special_tokens_map.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<extra_id_0>",
4
+ "<extra_id_1>",
5
+ "<extra_id_2>",
6
+ "<extra_id_3>",
7
+ "<extra_id_4>",
8
+ "<extra_id_5>",
9
+ "<extra_id_6>",
10
+ "<extra_id_7>",
11
+ "<extra_id_8>",
12
+ "<extra_id_9>",
13
+ "<extra_id_10>",
14
+ "<extra_id_11>",
15
+ "<extra_id_12>",
16
+ "<extra_id_13>",
17
+ "<extra_id_14>",
18
+ "<extra_id_15>",
19
+ "<extra_id_16>",
20
+ "<extra_id_17>",
21
+ "<extra_id_18>",
22
+ "<extra_id_19>",
23
+ "<extra_id_20>",
24
+ "<extra_id_21>",
25
+ "<extra_id_22>",
26
+ "<extra_id_23>",
27
+ "<extra_id_24>",
28
+ "<extra_id_25>",
29
+ "<extra_id_26>",
30
+ "<extra_id_27>",
31
+ "<extra_id_28>",
32
+ "<extra_id_29>",
33
+ "<extra_id_30>",
34
+ "<extra_id_31>",
35
+ "<extra_id_32>",
36
+ "<extra_id_33>",
37
+ "<extra_id_34>",
38
+ "<extra_id_35>",
39
+ "<extra_id_36>",
40
+ "<extra_id_37>",
41
+ "<extra_id_38>",
42
+ "<extra_id_39>",
43
+ "<extra_id_40>",
44
+ "<extra_id_41>",
45
+ "<extra_id_42>",
46
+ "<extra_id_43>",
47
+ "<extra_id_44>",
48
+ "<extra_id_45>",
49
+ "<extra_id_46>",
50
+ "<extra_id_47>",
51
+ "<extra_id_48>",
52
+ "<extra_id_49>",
53
+ "<extra_id_50>",
54
+ "<extra_id_51>",
55
+ "<extra_id_52>",
56
+ "<extra_id_53>",
57
+ "<extra_id_54>",
58
+ "<extra_id_55>",
59
+ "<extra_id_56>",
60
+ "<extra_id_57>",
61
+ "<extra_id_58>",
62
+ "<extra_id_59>",
63
+ "<extra_id_60>",
64
+ "<extra_id_61>",
65
+ "<extra_id_62>",
66
+ "<extra_id_63>",
67
+ "<extra_id_64>",
68
+ "<extra_id_65>",
69
+ "<extra_id_66>",
70
+ "<extra_id_67>",
71
+ "<extra_id_68>",
72
+ "<extra_id_69>",
73
+ "<extra_id_70>",
74
+ "<extra_id_71>",
75
+ "<extra_id_72>",
76
+ "<extra_id_73>",
77
+ "<extra_id_74>",
78
+ "<extra_id_75>",
79
+ "<extra_id_76>",
80
+ "<extra_id_77>",
81
+ "<extra_id_78>",
82
+ "<extra_id_79>",
83
+ "<extra_id_80>",
84
+ "<extra_id_81>",
85
+ "<extra_id_82>",
86
+ "<extra_id_83>",
87
+ "<extra_id_84>",
88
+ "<extra_id_85>",
89
+ "<extra_id_86>",
90
+ "<extra_id_87>",
91
+ "<extra_id_88>",
92
+ "<extra_id_89>",
93
+ "<extra_id_90>",
94
+ "<extra_id_91>",
95
+ "<extra_id_92>",
96
+ "<extra_id_93>",
97
+ "<extra_id_94>",
98
+ "<extra_id_95>",
99
+ "<extra_id_96>",
100
+ "<extra_id_97>",
101
+ "<extra_id_98>",
102
+ "<extra_id_99>"
103
+ ],
104
+ "eos_token": "</s>",
105
+ "pad_token": "<pad>",
106
+ "unk_token": "<unk>"
107
+ }
spiece.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d60acb128cf7b7f2536e8f38a5b18a05535c9e14c7a355904270e15b0945ea86
3
+ size 791656
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<extra_id_0>",
4
+ "<extra_id_1>",
5
+ "<extra_id_2>",
6
+ "<extra_id_3>",
7
+ "<extra_id_4>",
8
+ "<extra_id_5>",
9
+ "<extra_id_6>",
10
+ "<extra_id_7>",
11
+ "<extra_id_8>",
12
+ "<extra_id_9>",
13
+ "<extra_id_10>",
14
+ "<extra_id_11>",
15
+ "<extra_id_12>",
16
+ "<extra_id_13>",
17
+ "<extra_id_14>",
18
+ "<extra_id_15>",
19
+ "<extra_id_16>",
20
+ "<extra_id_17>",
21
+ "<extra_id_18>",
22
+ "<extra_id_19>",
23
+ "<extra_id_20>",
24
+ "<extra_id_21>",
25
+ "<extra_id_22>",
26
+ "<extra_id_23>",
27
+ "<extra_id_24>",
28
+ "<extra_id_25>",
29
+ "<extra_id_26>",
30
+ "<extra_id_27>",
31
+ "<extra_id_28>",
32
+ "<extra_id_29>",
33
+ "<extra_id_30>",
34
+ "<extra_id_31>",
35
+ "<extra_id_32>",
36
+ "<extra_id_33>",
37
+ "<extra_id_34>",
38
+ "<extra_id_35>",
39
+ "<extra_id_36>",
40
+ "<extra_id_37>",
41
+ "<extra_id_38>",
42
+ "<extra_id_39>",
43
+ "<extra_id_40>",
44
+ "<extra_id_41>",
45
+ "<extra_id_42>",
46
+ "<extra_id_43>",
47
+ "<extra_id_44>",
48
+ "<extra_id_45>",
49
+ "<extra_id_46>",
50
+ "<extra_id_47>",
51
+ "<extra_id_48>",
52
+ "<extra_id_49>",
53
+ "<extra_id_50>",
54
+ "<extra_id_51>",
55
+ "<extra_id_52>",
56
+ "<extra_id_53>",
57
+ "<extra_id_54>",
58
+ "<extra_id_55>",
59
+ "<extra_id_56>",
60
+ "<extra_id_57>",
61
+ "<extra_id_58>",
62
+ "<extra_id_59>",
63
+ "<extra_id_60>",
64
+ "<extra_id_61>",
65
+ "<extra_id_62>",
66
+ "<extra_id_63>",
67
+ "<extra_id_64>",
68
+ "<extra_id_65>",
69
+ "<extra_id_66>",
70
+ "<extra_id_67>",
71
+ "<extra_id_68>",
72
+ "<extra_id_69>",
73
+ "<extra_id_70>",
74
+ "<extra_id_71>",
75
+ "<extra_id_72>",
76
+ "<extra_id_73>",
77
+ "<extra_id_74>",
78
+ "<extra_id_75>",
79
+ "<extra_id_76>",
80
+ "<extra_id_77>",
81
+ "<extra_id_78>",
82
+ "<extra_id_79>",
83
+ "<extra_id_80>",
84
+ "<extra_id_81>",
85
+ "<extra_id_82>",
86
+ "<extra_id_83>",
87
+ "<extra_id_84>",
88
+ "<extra_id_85>",
89
+ "<extra_id_86>",
90
+ "<extra_id_87>",
91
+ "<extra_id_88>",
92
+ "<extra_id_89>",
93
+ "<extra_id_90>",
94
+ "<extra_id_91>",
95
+ "<extra_id_92>",
96
+ "<extra_id_93>",
97
+ "<extra_id_94>",
98
+ "<extra_id_95>",
99
+ "<extra_id_96>",
100
+ "<extra_id_97>",
101
+ "<extra_id_98>",
102
+ "<extra_id_99>"
103
+ ],
104
+ "eos_token": "</s>",
105
+ "extra_ids": 100,
106
+ "model_max_length": 512,
107
+ "name_or_path": "../../models/flan-t5-large/",
108
+ "pad_token": "<pad>",
109
+ "sp_model_kwargs": {},
110
+ "special_tokens_map_file": "/home/younes_huggingface_co/.cache/huggingface/hub/models--google--t5-v1_1-large/snapshots/314bc112b191ec17b625ba81438dc73d6c23659d/special_tokens_map.json",
111
+ "tokenizer_class": "T5Tokenizer",
112
+ "unk_token": "<unk>"
113
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 15.0,
3
+ "train_loss": 1.5328590292826185,
4
+ "train_runtime": 18417.6233,
5
+ "train_samples": 175332,
6
+ "train_samples_per_second": 142.797,
7
+ "train_steps_per_second": 2.232
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,310 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 35.2849,
3
+ "best_model_checkpoint": "large_ox-wn_cod_15ep_eap/checkpoint-38360",
4
+ "epoch": 15.0,
5
+ "global_step": 41100,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 1.0,
12
+ "learning_rate": 4.666666666666667e-05,
13
+ "loss": 2.1769,
14
+ "step": 2740
15
+ },
16
+ {
17
+ "epoch": 1.0,
18
+ "eval_gen_len": 11.342940924045202,
19
+ "eval_loss": 1.905047059059143,
20
+ "eval_rouge1": 28.7222,
21
+ "eval_rouge2": 9.1873,
22
+ "eval_rougeL": 26.6888,
23
+ "eval_rougeLsum": 26.6937,
24
+ "eval_runtime": 86.0596,
25
+ "eval_samples_per_second": 162.469,
26
+ "eval_steps_per_second": 1.278,
27
+ "step": 2740
28
+ },
29
+ {
30
+ "epoch": 2.0,
31
+ "learning_rate": 4.3333333333333334e-05,
32
+ "loss": 1.9408,
33
+ "step": 5480
34
+ },
35
+ {
36
+ "epoch": 2.0,
37
+ "eval_gen_len": 11.416464025175225,
38
+ "eval_loss": 1.8151417970657349,
39
+ "eval_rouge1": 29.8799,
40
+ "eval_rouge2": 10.2327,
41
+ "eval_rougeL": 27.7947,
42
+ "eval_rougeLsum": 27.8044,
43
+ "eval_runtime": 98.7019,
44
+ "eval_samples_per_second": 141.659,
45
+ "eval_steps_per_second": 1.114,
46
+ "step": 5480
47
+ },
48
+ {
49
+ "epoch": 3.0,
50
+ "learning_rate": 4e-05,
51
+ "loss": 1.8124,
52
+ "step": 8220
53
+ },
54
+ {
55
+ "epoch": 3.0,
56
+ "eval_gen_len": 11.531039908453726,
57
+ "eval_loss": 1.7607892751693726,
58
+ "eval_rouge1": 30.9845,
59
+ "eval_rouge2": 10.9982,
60
+ "eval_rougeL": 28.8059,
61
+ "eval_rougeLsum": 28.8131,
62
+ "eval_runtime": 96.5011,
63
+ "eval_samples_per_second": 144.889,
64
+ "eval_steps_per_second": 1.14,
65
+ "step": 8220
66
+ },
67
+ {
68
+ "epoch": 4.0,
69
+ "learning_rate": 3.6666666666666666e-05,
70
+ "loss": 1.7118,
71
+ "step": 10960
72
+ },
73
+ {
74
+ "epoch": 4.0,
75
+ "eval_gen_len": 11.703690459161779,
76
+ "eval_loss": 1.7228699922561646,
77
+ "eval_rouge1": 31.6943,
78
+ "eval_rouge2": 11.7412,
79
+ "eval_rougeL": 29.4967,
80
+ "eval_rougeLsum": 29.5319,
81
+ "eval_runtime": 87.7321,
82
+ "eval_samples_per_second": 159.372,
83
+ "eval_steps_per_second": 1.254,
84
+ "step": 10960
85
+ },
86
+ {
87
+ "epoch": 5.0,
88
+ "learning_rate": 3.3333333333333335e-05,
89
+ "loss": 1.6286,
90
+ "step": 13700
91
+ },
92
+ {
93
+ "epoch": 5.0,
94
+ "eval_gen_len": 11.77835788871406,
95
+ "eval_loss": 1.6936795711517334,
96
+ "eval_rouge1": 32.5839,
97
+ "eval_rouge2": 12.2431,
98
+ "eval_rougeL": 30.1799,
99
+ "eval_rougeLsum": 30.206,
100
+ "eval_runtime": 84.5028,
101
+ "eval_samples_per_second": 165.462,
102
+ "eval_steps_per_second": 1.302,
103
+ "step": 13700
104
+ },
105
+ {
106
+ "epoch": 6.0,
107
+ "learning_rate": 3e-05,
108
+ "loss": 1.5597,
109
+ "step": 16440
110
+ },
111
+ {
112
+ "epoch": 6.0,
113
+ "eval_gen_len": 11.597410956944643,
114
+ "eval_loss": 1.674757480621338,
115
+ "eval_rouge1": 32.9915,
116
+ "eval_rouge2": 12.8514,
117
+ "eval_rougeL": 30.7016,
118
+ "eval_rougeLsum": 30.7145,
119
+ "eval_runtime": 87.802,
120
+ "eval_samples_per_second": 159.245,
121
+ "eval_steps_per_second": 1.253,
122
+ "step": 16440
123
+ },
124
+ {
125
+ "epoch": 7.0,
126
+ "learning_rate": 2.6666666666666667e-05,
127
+ "loss": 1.4982,
128
+ "step": 19180
129
+ },
130
+ {
131
+ "epoch": 7.0,
132
+ "eval_gen_len": 11.358031755113718,
133
+ "eval_loss": 1.6578471660614014,
134
+ "eval_rouge1": 33.2157,
135
+ "eval_rouge2": 13.1389,
136
+ "eval_rougeL": 30.9428,
137
+ "eval_rougeLsum": 30.9519,
138
+ "eval_runtime": 89.406,
139
+ "eval_samples_per_second": 156.388,
140
+ "eval_steps_per_second": 1.23,
141
+ "step": 19180
142
+ },
143
+ {
144
+ "epoch": 8.0,
145
+ "learning_rate": 2.3333333333333336e-05,
146
+ "loss": 1.4468,
147
+ "step": 21920
148
+ },
149
+ {
150
+ "epoch": 8.0,
151
+ "eval_gen_len": 11.572378772707767,
152
+ "eval_loss": 1.6473166942596436,
153
+ "eval_rouge1": 33.6146,
154
+ "eval_rouge2": 13.5922,
155
+ "eval_rougeL": 31.3001,
156
+ "eval_rougeLsum": 31.3235,
157
+ "eval_runtime": 98.6248,
158
+ "eval_samples_per_second": 141.77,
159
+ "eval_steps_per_second": 1.115,
160
+ "step": 21920
161
+ },
162
+ {
163
+ "epoch": 9.0,
164
+ "learning_rate": 2e-05,
165
+ "loss": 1.4022,
166
+ "step": 24660
167
+ },
168
+ {
169
+ "epoch": 9.0,
170
+ "eval_gen_len": 11.738878558146189,
171
+ "eval_loss": 1.6383947134017944,
172
+ "eval_rouge1": 34.1711,
173
+ "eval_rouge2": 14.1117,
174
+ "eval_rougeL": 31.7951,
175
+ "eval_rougeLsum": 31.8066,
176
+ "eval_runtime": 89.5372,
177
+ "eval_samples_per_second": 156.159,
178
+ "eval_steps_per_second": 1.229,
179
+ "step": 24660
180
+ },
181
+ {
182
+ "epoch": 10.0,
183
+ "learning_rate": 1.6666666666666667e-05,
184
+ "loss": 1.364,
185
+ "step": 27400
186
+ },
187
+ {
188
+ "epoch": 10.0,
189
+ "eval_gen_len": 11.665856100700902,
190
+ "eval_loss": 1.6336920261383057,
191
+ "eval_rouge1": 34.5489,
192
+ "eval_rouge2": 14.5012,
193
+ "eval_rougeL": 32.1329,
194
+ "eval_rougeLsum": 32.1446,
195
+ "eval_runtime": 103.7766,
196
+ "eval_samples_per_second": 134.732,
197
+ "eval_steps_per_second": 1.06,
198
+ "step": 27400
199
+ },
200
+ {
201
+ "epoch": 11.0,
202
+ "learning_rate": 1.3333333333333333e-05,
203
+ "loss": 1.3321,
204
+ "step": 30140
205
+ },
206
+ {
207
+ "epoch": 11.0,
208
+ "eval_gen_len": 11.800314690316121,
209
+ "eval_loss": 1.6291483640670776,
210
+ "eval_rouge1": 34.7133,
211
+ "eval_rouge2": 14.7297,
212
+ "eval_rougeL": 32.3042,
213
+ "eval_rougeLsum": 32.314,
214
+ "eval_runtime": 91.3961,
215
+ "eval_samples_per_second": 152.982,
216
+ "eval_steps_per_second": 1.204,
217
+ "step": 30140
218
+ },
219
+ {
220
+ "epoch": 12.0,
221
+ "learning_rate": 1e-05,
222
+ "loss": 1.3054,
223
+ "step": 32880
224
+ },
225
+ {
226
+ "epoch": 12.0,
227
+ "eval_gen_len": 11.761908167644114,
228
+ "eval_loss": 1.6267131567001343,
229
+ "eval_rouge1": 34.9411,
230
+ "eval_rouge2": 15.0282,
231
+ "eval_rougeL": 32.5335,
232
+ "eval_rougeLsum": 32.5451,
233
+ "eval_runtime": 98.5092,
234
+ "eval_samples_per_second": 141.936,
235
+ "eval_steps_per_second": 1.117,
236
+ "step": 32880
237
+ },
238
+ {
239
+ "epoch": 13.0,
240
+ "learning_rate": 6.666666666666667e-06,
241
+ "loss": 1.2845,
242
+ "step": 35620
243
+ },
244
+ {
245
+ "epoch": 13.0,
246
+ "eval_gen_len": 11.831712201401801,
247
+ "eval_loss": 1.626239538192749,
248
+ "eval_rouge1": 35.1648,
249
+ "eval_rouge2": 15.2154,
250
+ "eval_rougeL": 32.7387,
251
+ "eval_rougeLsum": 32.742,
252
+ "eval_runtime": 85.528,
253
+ "eval_samples_per_second": 163.479,
254
+ "eval_steps_per_second": 1.286,
255
+ "step": 35620
256
+ },
257
+ {
258
+ "epoch": 14.0,
259
+ "learning_rate": 3.3333333333333333e-06,
260
+ "loss": 1.2699,
261
+ "step": 38360
262
+ },
263
+ {
264
+ "epoch": 14.0,
265
+ "eval_gen_len": 11.816764411386067,
266
+ "eval_loss": 1.6257190704345703,
267
+ "eval_rouge1": 35.2849,
268
+ "eval_rouge2": 15.3109,
269
+ "eval_rougeL": 32.8508,
270
+ "eval_rougeLsum": 32.853,
271
+ "eval_runtime": 84.6116,
272
+ "eval_samples_per_second": 165.249,
273
+ "eval_steps_per_second": 1.3,
274
+ "step": 38360
275
+ },
276
+ {
277
+ "epoch": 15.0,
278
+ "learning_rate": 0.0,
279
+ "loss": 1.2595,
280
+ "step": 41100
281
+ },
282
+ {
283
+ "epoch": 15.0,
284
+ "eval_gen_len": 11.797096266628522,
285
+ "eval_loss": 1.6273423433303833,
286
+ "eval_rouge1": 35.2224,
287
+ "eval_rouge2": 15.2781,
288
+ "eval_rougeL": 32.7718,
289
+ "eval_rougeLsum": 32.7826,
290
+ "eval_runtime": 95.1523,
291
+ "eval_samples_per_second": 146.943,
292
+ "eval_steps_per_second": 1.156,
293
+ "step": 41100
294
+ },
295
+ {
296
+ "epoch": 15.0,
297
+ "step": 41100,
298
+ "total_flos": 9.049973435337277e+17,
299
+ "train_loss": 1.5328590292826185,
300
+ "train_runtime": 18417.6233,
301
+ "train_samples_per_second": 142.797,
302
+ "train_steps_per_second": 2.232
303
+ }
304
+ ],
305
+ "max_steps": 41100,
306
+ "num_train_epochs": 15,
307
+ "total_flos": 9.049973435337277e+17,
308
+ "trial_name": null,
309
+ "trial_params": null
310
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e670fefbf5c2ecd91c86523749677d4943f1a7e1d787d809c92b97950e2b9ec0
3
+ size 3503