davda54 commited on
Commit
319a9bb
·
verified ·
1 Parent(s): 8150d8d

Update modeling_norbert.py

Browse files
Files changed (1) hide show
  1. modeling_norbert.py +12 -40
modeling_norbert.py CHANGED
@@ -57,14 +57,6 @@ class MaskClassifier(nn.Module):
57
  nn.Dropout(config.hidden_dropout_prob),
58
  nn.Linear(subword_embedding.size(1), subword_embedding.size(0))
59
  )
60
- self.initialize(config.hidden_size, subword_embedding)
61
-
62
- def initialize(self, hidden_size, embedding):
63
- std = math.sqrt(2.0 / (5.0 * hidden_size))
64
- nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
65
- self.nonlinearity[-1].weight = embedding
66
- self.nonlinearity[1].bias.data.zero_()
67
- self.nonlinearity[-1].bias.data.zero_()
68
 
69
  def forward(self, x, masked_lm_labels=None):
70
  if masked_lm_labels is not None:
@@ -104,12 +96,6 @@ class FeedForward(nn.Module):
104
  nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
105
  nn.Dropout(config.hidden_dropout_prob)
106
  )
107
- self.initialize(config.hidden_size)
108
-
109
- def initialize(self, hidden_size):
110
- std = math.sqrt(2.0 / (5.0 * hidden_size))
111
- nn.init.trunc_normal_(self.mlp[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
112
- nn.init.trunc_normal_(self.mlp[-2].weight, mean=0.0, std=std, a=-2*std, b=2*std)
113
 
114
  def forward(self, x):
115
  return self.mlp(x)
@@ -160,7 +146,6 @@ class Attention(nn.Module):
160
 
161
  self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
162
  self.scale = 1.0 / math.sqrt(3 * self.head_size)
163
- self.initialize()
164
 
165
  def make_log_bucket_position(self, relative_pos, bucket_size, max_position):
166
  sign = torch.sign(relative_pos)
@@ -170,15 +155,6 @@ class Attention(nn.Module):
170
  bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
171
  return bucket_pos
172
 
173
- def initialize(self):
174
- std = math.sqrt(2.0 / (5.0 * self.hidden_size))
175
- nn.init.trunc_normal_(self.in_proj_qk.weight, mean=0.0, std=std, a=-2*std, b=2*std)
176
- nn.init.trunc_normal_(self.in_proj_v.weight, mean=0.0, std=std, a=-2*std, b=2*std)
177
- nn.init.trunc_normal_(self.out_proj.weight, mean=0.0, std=std, a=-2*std, b=2*std)
178
- self.in_proj_qk.bias.data.zero_()
179
- self.in_proj_v.bias.data.zero_()
180
- self.out_proj.bias.data.zero_()
181
-
182
  def compute_attention_scores(self, hidden_states, relative_embedding):
183
  key_len, batch_size, _ = hidden_states.size()
184
  query_len = key_len
@@ -246,13 +222,6 @@ class Embedding(nn.Module):
246
  self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size))
247
  self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
248
 
249
- self.initialize()
250
-
251
- def initialize(self):
252
- std = math.sqrt(2.0 / (5.0 * self.hidden_size))
253
- nn.init.trunc_normal_(self.relative_embedding, mean=0.0, std=std, a=-2*std, b=2*std)
254
- nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std)
255
-
256
  def forward(self, input_ids):
257
  word_embedding = self.dropout(self.word_layer_norm(self.word_embedding(input_ids)))
258
  relative_embeddings = self.relative_layer_norm(self.relative_embedding)
@@ -273,13 +242,24 @@ class NorbertPreTrainedModel(PreTrainedModel):
273
  module.activation_checkpointing = value
274
 
275
  def _init_weights(self, module):
276
- pass # everything is already initialized
 
 
 
 
 
 
 
 
 
 
277
 
278
 
279
  class NorbertModel(NorbertPreTrainedModel):
280
  def __init__(self, config, add_mlm_layer=False, gradient_checkpointing=False, **kwargs):
281
  super().__init__(config, **kwargs)
282
  self.config = config
 
283
 
284
  self.embedding = Embedding(config)
285
  self.transformer = Encoder(config, activation_checkpointing=gradient_checkpointing)
@@ -414,14 +394,6 @@ class Classifier(nn.Module):
414
  nn.Dropout(drop_out),
415
  nn.Linear(config.hidden_size, num_labels)
416
  )
417
- self.initialize(config.hidden_size)
418
-
419
- def initialize(self, hidden_size):
420
- std = math.sqrt(2.0 / (5.0 * hidden_size))
421
- nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
422
- nn.init.trunc_normal_(self.nonlinearity[-1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
423
- self.nonlinearity[1].bias.data.zero_()
424
- self.nonlinearity[-1].bias.data.zero_()
425
 
426
  def forward(self, x):
427
  x = self.nonlinearity(x)
 
57
  nn.Dropout(config.hidden_dropout_prob),
58
  nn.Linear(subword_embedding.size(1), subword_embedding.size(0))
59
  )
 
 
 
 
 
 
 
 
60
 
61
  def forward(self, x, masked_lm_labels=None):
62
  if masked_lm_labels is not None:
 
96
  nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
97
  nn.Dropout(config.hidden_dropout_prob)
98
  )
 
 
 
 
 
 
99
 
100
  def forward(self, x):
101
  return self.mlp(x)
 
146
 
147
  self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
148
  self.scale = 1.0 / math.sqrt(3 * self.head_size)
 
149
 
150
  def make_log_bucket_position(self, relative_pos, bucket_size, max_position):
151
  sign = torch.sign(relative_pos)
 
155
  bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
156
  return bucket_pos
157
 
 
 
 
 
 
 
 
 
 
158
  def compute_attention_scores(self, hidden_states, relative_embedding):
159
  key_len, batch_size, _ = hidden_states.size()
160
  query_len = key_len
 
222
  self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size))
223
  self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
224
 
 
 
 
 
 
 
 
225
  def forward(self, input_ids):
226
  word_embedding = self.dropout(self.word_layer_norm(self.word_embedding(input_ids)))
227
  relative_embeddings = self.relative_layer_norm(self.relative_embedding)
 
242
  module.activation_checkpointing = value
243
 
244
  def _init_weights(self, module):
245
+ std = math.sqrt(2.0 / (5.0 * self.hidden_size))
246
+
247
+ if isinstance(module, nn.Linear):
248
+ nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
249
+ if module.bias is not None:
250
+ module.bias.data.zero_()
251
+ elif isinstance(module, nn.Embedding):
252
+ nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
253
+ elif isinstance(module, nn.LayerNorm):
254
+ module.bias.data.zero_()
255
+ module.weight.data.fill_(1.0)
256
 
257
 
258
  class NorbertModel(NorbertPreTrainedModel):
259
  def __init__(self, config, add_mlm_layer=False, gradient_checkpointing=False, **kwargs):
260
  super().__init__(config, **kwargs)
261
  self.config = config
262
+ self.hidden_size = config.hidden_size
263
 
264
  self.embedding = Embedding(config)
265
  self.transformer = Encoder(config, activation_checkpointing=gradient_checkpointing)
 
394
  nn.Dropout(drop_out),
395
  nn.Linear(config.hidden_size, num_labels)
396
  )
 
 
 
 
 
 
 
 
397
 
398
  def forward(self, x):
399
  x = self.nonlinearity(x)