ltg
/

davda54 commited on
Commit
06b925f
1 Parent(s): d5b960e

Create translate.py

Browse files
Files changed (1) hide show
  1. translate.py +85 -0
translate.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import transformers
3
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
4
+ from transformers.generation import LogitsProcessor
5
+
6
+
7
+ class RepetitionPenaltyLogitsProcessor(LogitsProcessor):
8
+ def __init__(self, penalty: float, model):
9
+ last_bias = model.classifier.nonlinearity[-1].bias.data
10
+ last_bias = torch.nn.functional.log_softmax(last_bias)
11
+ self.penalty = penalty * (last_bias - last_bias.max())
12
+
13
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
14
+ penalized_score = torch.gather(scores + self.penalty.unsqueeze(0).to(input_ids.device), 1, input_ids).to(scores.dtype)
15
+ scores.scatter_(1, input_ids, penalized_score)
16
+ return scores
17
+
18
+
19
+ class Translator:
20
+ def __init__(self, model_path="ltg/nort5-base-en-no-translation", device="cpu"):
21
+ self.tokenizer = AutoTokenizer.from_pretrained(model_path)
22
+ self.cls_index = self.tokenizer.convert_tokens_to_ids("[CLS]")
23
+ self.sep_index = self.tokenizer.convert_tokens_to_ids("[SEP]")
24
+ self.eos_index = self.tokenizer.convert_tokens_to_ids("[EOS]")
25
+ self.pad_index = self.tokenizer.convert_tokens_to_ids("[PAD]")
26
+ self.eng_index = self.tokenizer.convert_tokens_to_ids(">>eng<<")
27
+ self.nob_index = self.tokenizer.convert_tokens_to_ids(">>nob<<")
28
+ self.nno_index = self.tokenizer.convert_tokens_to_ids(">>nno<<")
29
+
30
+ self.model = AutoModelForSeq2SeqLM.from_pretrained(model_path, trust_remote_code=True)
31
+
32
+ self.device = device
33
+ print(f"SYSTEM: Running on {self.device}", flush=True)
34
+
35
+ self.model = self.model.to(device)
36
+ self.model.eval()
37
+
38
+ print(f"Sucessfully loaded the model to the memory")
39
+
40
+ self.LANGUAGE_IDS = {
41
+ "en": self.eng_index,
42
+ "nb": self.nob_index,
43
+ "nn": self.nno_index
44
+ }
45
+
46
+ def __call__(self, source, source_language, target_language):
47
+ source = [s.strip() for s in source.split('\n')]
48
+ source_subwords = self.tokenizer(source).input_ids
49
+ source_subwords = [[self.cls_index, self.LANGUAGE_IDS[target_language], self.LANGUAGE_IDS[source_language]] + s + [self.sep_index] for s in source_subwords]
50
+ source_subwords = [torch.tensor(s) for s in source_subwords]
51
+ source_subwords = torch.nn.utils.rnn.pad_sequence(source_subwords, batch_first=True, padding_value=self.pad_index)
52
+ source_subwords = source_subwords[:, :512].to(self.device)
53
+
54
+ def generate(model, **kwargs):
55
+ with torch.inference_mode():
56
+ with torch.autocast(enabled=self.device != "cpu", device_type="cuda", dtype=torch.bfloat16):
57
+ return model.generate(**kwargs)
58
+
59
+ generate_kwargs = dict(
60
+ input_ids=source_subwords,
61
+ attention_mask=(source_subwords != self.pad_index).long(),
62
+ max_new_tokens = 512-1,
63
+ num_beams=8,
64
+ length_penalty=1.6,
65
+ early_stopping=True,
66
+ do_sample=False,
67
+ use_cache=True,
68
+ logits_processor=[RepetitionPenaltyLogitsProcessor(0.5, self.model), transformers.LogitNormalization()]
69
+ )
70
+ output = generate(self.model, **generate_kwargs).tolist()
71
+ paragraphs = [self.tokenizer.decode(c, skip_special_tokens=True).strip() for c in output]
72
+ translation = '\n'.join(paragraphs)
73
+
74
+ return translation
75
+
76
+
77
+ if __name__ == "__main__":
78
+
79
+ translator = Translator()
80
+
81
+ en_text = "How are you feeling right now? Better?"
82
+ no_text = translator(en_text, "en", "nb")
83
+
84
+ print(en_text)
85
+ print(no_text)