Create translate.py
Browse files- translate.py +85 -0
translate.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import transformers
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
+
from transformers.generation import LogitsProcessor
|
5 |
+
|
6 |
+
|
7 |
+
class RepetitionPenaltyLogitsProcessor(LogitsProcessor):
|
8 |
+
def __init__(self, penalty: float, model):
|
9 |
+
last_bias = model.classifier.nonlinearity[-1].bias.data
|
10 |
+
last_bias = torch.nn.functional.log_softmax(last_bias)
|
11 |
+
self.penalty = penalty * (last_bias - last_bias.max())
|
12 |
+
|
13 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
14 |
+
penalized_score = torch.gather(scores + self.penalty.unsqueeze(0).to(input_ids.device), 1, input_ids).to(scores.dtype)
|
15 |
+
scores.scatter_(1, input_ids, penalized_score)
|
16 |
+
return scores
|
17 |
+
|
18 |
+
|
19 |
+
class Translator:
|
20 |
+
def __init__(self, model_path="ltg/nort5-base-en-no-translation", device="cpu"):
|
21 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
22 |
+
self.cls_index = self.tokenizer.convert_tokens_to_ids("[CLS]")
|
23 |
+
self.sep_index = self.tokenizer.convert_tokens_to_ids("[SEP]")
|
24 |
+
self.eos_index = self.tokenizer.convert_tokens_to_ids("[EOS]")
|
25 |
+
self.pad_index = self.tokenizer.convert_tokens_to_ids("[PAD]")
|
26 |
+
self.eng_index = self.tokenizer.convert_tokens_to_ids(">>eng<<")
|
27 |
+
self.nob_index = self.tokenizer.convert_tokens_to_ids(">>nob<<")
|
28 |
+
self.nno_index = self.tokenizer.convert_tokens_to_ids(">>nno<<")
|
29 |
+
|
30 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_path, trust_remote_code=True)
|
31 |
+
|
32 |
+
self.device = device
|
33 |
+
print(f"SYSTEM: Running on {self.device}", flush=True)
|
34 |
+
|
35 |
+
self.model = self.model.to(device)
|
36 |
+
self.model.eval()
|
37 |
+
|
38 |
+
print(f"Sucessfully loaded the model to the memory")
|
39 |
+
|
40 |
+
self.LANGUAGE_IDS = {
|
41 |
+
"en": self.eng_index,
|
42 |
+
"nb": self.nob_index,
|
43 |
+
"nn": self.nno_index
|
44 |
+
}
|
45 |
+
|
46 |
+
def __call__(self, source, source_language, target_language):
|
47 |
+
source = [s.strip() for s in source.split('\n')]
|
48 |
+
source_subwords = self.tokenizer(source).input_ids
|
49 |
+
source_subwords = [[self.cls_index, self.LANGUAGE_IDS[target_language], self.LANGUAGE_IDS[source_language]] + s + [self.sep_index] for s in source_subwords]
|
50 |
+
source_subwords = [torch.tensor(s) for s in source_subwords]
|
51 |
+
source_subwords = torch.nn.utils.rnn.pad_sequence(source_subwords, batch_first=True, padding_value=self.pad_index)
|
52 |
+
source_subwords = source_subwords[:, :512].to(self.device)
|
53 |
+
|
54 |
+
def generate(model, **kwargs):
|
55 |
+
with torch.inference_mode():
|
56 |
+
with torch.autocast(enabled=self.device != "cpu", device_type="cuda", dtype=torch.bfloat16):
|
57 |
+
return model.generate(**kwargs)
|
58 |
+
|
59 |
+
generate_kwargs = dict(
|
60 |
+
input_ids=source_subwords,
|
61 |
+
attention_mask=(source_subwords != self.pad_index).long(),
|
62 |
+
max_new_tokens = 512-1,
|
63 |
+
num_beams=8,
|
64 |
+
length_penalty=1.6,
|
65 |
+
early_stopping=True,
|
66 |
+
do_sample=False,
|
67 |
+
use_cache=True,
|
68 |
+
logits_processor=[RepetitionPenaltyLogitsProcessor(0.5, self.model), transformers.LogitNormalization()]
|
69 |
+
)
|
70 |
+
output = generate(self.model, **generate_kwargs).tolist()
|
71 |
+
paragraphs = [self.tokenizer.decode(c, skip_special_tokens=True).strip() for c in output]
|
72 |
+
translation = '\n'.join(paragraphs)
|
73 |
+
|
74 |
+
return translation
|
75 |
+
|
76 |
+
|
77 |
+
if __name__ == "__main__":
|
78 |
+
|
79 |
+
translator = Translator()
|
80 |
+
|
81 |
+
en_text = "How are you feeling right now? Better?"
|
82 |
+
no_text = translator(en_text, "en", "nb")
|
83 |
+
|
84 |
+
print(en_text)
|
85 |
+
print(no_text)
|