Upload folder using huggingface_hub
Browse files- config.json +34 -0
- configuration_nort5.py +44 -0
- generation_config.json +8 -0
- modeling_nort5.py +711 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +3 -0
config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"NorT5ForConditionalGeneration"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_nort5.NorT5Config",
|
7 |
+
"AutoModel": "modeling_nort5.NorT5Model",
|
8 |
+
"AutoModelForSeq2SeqLM": "modeling_nort5.NorT5ForConditionalGeneration",
|
9 |
+
"AutoModelForConditionalGeneration": "modeling_nort5.NorT5ForConditionalGeneration"
|
10 |
+
},
|
11 |
+
"attention_probs_dropout_prob": 0.0,
|
12 |
+
"bos_token_id": 5,
|
13 |
+
"cls_token_id": 1,
|
14 |
+
"eos_token_id": 6,
|
15 |
+
"hidden_dropout_prob": 0.0,
|
16 |
+
"hidden_size": 512,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 1365,
|
19 |
+
"layer_norm_eps": 1e-07,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"num_attention_heads": 8,
|
22 |
+
"num_hidden_layers": 24,
|
23 |
+
"output_all_encoded_layers": true,
|
24 |
+
"pad_token_id": 3,
|
25 |
+
"position_bucket_size": 32,
|
26 |
+
"sep_token_id": 2,
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.24.0",
|
29 |
+
"vocab_size": 65536,
|
30 |
+
"max_length": 512,
|
31 |
+
"max_new_tokens": 256,
|
32 |
+
"is_encoder_decoder": true
|
33 |
+
}
|
34 |
+
|
configuration_nort5.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class NorT5Config(PretrainedConfig):
|
5 |
+
"""Configuration class to store the configuration of a `NorT5`.
|
6 |
+
"""
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
vocab_size=50000,
|
10 |
+
attention_probs_dropout_prob=0.1,
|
11 |
+
hidden_dropout_prob=0.1,
|
12 |
+
hidden_size=768,
|
13 |
+
intermediate_size=2048,
|
14 |
+
max_position_embeddings=512,
|
15 |
+
position_bucket_size=32,
|
16 |
+
num_attention_heads=12,
|
17 |
+
num_hidden_layers=12,
|
18 |
+
layer_norm_eps=1.0e-7,
|
19 |
+
output_all_encoded_layers=True,
|
20 |
+
pad_token_id=3,
|
21 |
+
cls_token_id=1,
|
22 |
+
sep_token_id=2,
|
23 |
+
bos_token_id=5,
|
24 |
+
eos_token_id=6,
|
25 |
+
**kwargs,
|
26 |
+
):
|
27 |
+
super().__init__(**kwargs)
|
28 |
+
|
29 |
+
self.vocab_size = vocab_size
|
30 |
+
self.hidden_size = hidden_size
|
31 |
+
self.num_hidden_layers = num_hidden_layers
|
32 |
+
self.num_attention_heads = num_attention_heads
|
33 |
+
self.intermediate_size = intermediate_size
|
34 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
35 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
36 |
+
self.max_position_embeddings = max_position_embeddings
|
37 |
+
self.output_all_encoded_layers = output_all_encoded_layers
|
38 |
+
self.position_bucket_size = position_bucket_size
|
39 |
+
self.layer_norm_eps = layer_norm_eps
|
40 |
+
self.pad_token_id = pad_token_id
|
41 |
+
self.cls_token_id = cls_token_id
|
42 |
+
self.sep_token_id = sep_token_id
|
43 |
+
self.bos_token_id = bos_token_id
|
44 |
+
self.eos_token_id = eos_token_id
|
generation_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"decoder_start_token_id": 5,
|
4 |
+
"eos_token_id": 6,
|
5 |
+
"pad_token_id": 3,
|
6 |
+
"transformers_version": "4.27.0.dev0"
|
7 |
+
}
|
8 |
+
|
modeling_nort5.py
ADDED
@@ -0,0 +1,711 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import List, Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from transformers.pytorch_utils import softmax_backward_data
|
8 |
+
from torch.utils import checkpoint
|
9 |
+
|
10 |
+
from .configuration_nort5 import NorT5Config
|
11 |
+
from transformers.modeling_utils import PreTrainedModel
|
12 |
+
from transformers.activations import gelu_new
|
13 |
+
from transformers.modeling_outputs import (
|
14 |
+
Seq2SeqModelOutput, Seq2SeqLMOutput, BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
class Encoder(nn.Module):
|
19 |
+
def __init__(self, config, activation_checkpointing=False):
|
20 |
+
super().__init__()
|
21 |
+
self.main_input_name = "input_ids"
|
22 |
+
|
23 |
+
self.relative_embedding = RelativeEmbedding(config)
|
24 |
+
self.layers = nn.ModuleList([EncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
25 |
+
|
26 |
+
for i, layer in enumerate(self.layers):
|
27 |
+
layer.mlp.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
|
28 |
+
layer.mlp.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
|
29 |
+
|
30 |
+
self.activation_checkpointing = activation_checkpointing
|
31 |
+
|
32 |
+
def forward(self, hidden_states, attention_mask):
|
33 |
+
relative_embedding = self.relative_embedding()
|
34 |
+
hidden_states, attention_probs = [hidden_states], []
|
35 |
+
|
36 |
+
for layer in self.layers:
|
37 |
+
if self.activation_checkpointing:
|
38 |
+
hidden_state, attention_p = checkpoint.checkpoint(layer, hidden_states[-1], attention_mask, relative_embedding)
|
39 |
+
else:
|
40 |
+
hidden_state, attention_p = layer(hidden_states[-1], attention_mask, relative_embedding)
|
41 |
+
|
42 |
+
hidden_states.append(hidden_state)
|
43 |
+
attention_probs.append(attention_p)
|
44 |
+
|
45 |
+
return hidden_states, attention_probs
|
46 |
+
|
47 |
+
|
48 |
+
class Decoder(nn.Module):
|
49 |
+
def __init__(self, config, activation_checkpointing=False):
|
50 |
+
super().__init__()
|
51 |
+
self.self_relative_embedding = RelativeEmbedding(config)
|
52 |
+
self.cross_relative_embedding = RelativeEmbedding(config)
|
53 |
+
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
54 |
+
|
55 |
+
for i, layer in enumerate(self.layers):
|
56 |
+
layer.mlp.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
|
57 |
+
layer.mlp.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
|
58 |
+
|
59 |
+
self.activation_checkpointing = activation_checkpointing
|
60 |
+
|
61 |
+
def forward(self, x, encoder_output, encoder_padding_mask, past_key_values=None):
|
62 |
+
self_relative_embedding = self.self_relative_embedding()
|
63 |
+
cross_relative_embedding = self.cross_relative_embedding()
|
64 |
+
|
65 |
+
if past_key_values is None:
|
66 |
+
autoreg_mask = torch.triu(
|
67 |
+
torch.full((x.size(0), x.size(0)), True, device=x.device),
|
68 |
+
diagonal=1
|
69 |
+
)
|
70 |
+
else:
|
71 |
+
autoreg_mask = None
|
72 |
+
|
73 |
+
# initialize past_key_values with `None` if past does not exist
|
74 |
+
if past_key_values is None:
|
75 |
+
past_key_values = [None] * len(self.layers)
|
76 |
+
|
77 |
+
hidden_states, self_attention_probs, cross_attention_probs, key_value_states = [x], [], [], []
|
78 |
+
for layer, past_key_value in zip(self.layers, past_key_values):
|
79 |
+
if self.activation_checkpointing:
|
80 |
+
hidden_state, self_attention_p, cross_attention_p, key_value_state = checkpoint.checkpoint(layer, hidden_states[-1], autoreg_mask, encoder_output, encoder_padding_mask, self_relative_embedding, cross_relative_embedding, past_key_value=None)
|
81 |
+
else:
|
82 |
+
hidden_state, self_attention_p, cross_attention_p, key_value_state = layer(hidden_states[-1], autoreg_mask, encoder_output, encoder_padding_mask, self_relative_embedding, cross_relative_embedding, past_key_value=past_key_value)
|
83 |
+
|
84 |
+
hidden_states.append(hidden_state)
|
85 |
+
self_attention_probs.append(self_attention_p)
|
86 |
+
cross_attention_probs.append(cross_attention_p)
|
87 |
+
key_value_states.append(key_value_state)
|
88 |
+
|
89 |
+
return hidden_states, self_attention_probs, cross_attention_probs, key_value_states
|
90 |
+
|
91 |
+
|
92 |
+
class MaskClassifier(nn.Module):
|
93 |
+
def __init__(self, config):
|
94 |
+
super().__init__()
|
95 |
+
self.nonlinearity = nn.Sequential(
|
96 |
+
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
|
97 |
+
nn.Dropout(config.hidden_dropout_prob),
|
98 |
+
nn.Linear(config.hidden_size, config.vocab_size)
|
99 |
+
)
|
100 |
+
self.initialize(config.hidden_size)
|
101 |
+
|
102 |
+
def initialize(self, hidden_size):
|
103 |
+
std = math.sqrt(2.0 / (5.0 * hidden_size))
|
104 |
+
nn.init.trunc_normal_(self.nonlinearity[-1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
105 |
+
self.nonlinearity[-1].bias.data.zero_()
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
x = self.nonlinearity(x)
|
109 |
+
return x
|
110 |
+
|
111 |
+
|
112 |
+
class EncoderLayer(nn.Module):
|
113 |
+
def __init__(self, config):
|
114 |
+
super().__init__()
|
115 |
+
self.attention = Attention(config, is_cross_attention=False)
|
116 |
+
self.mlp = FeedForward(config)
|
117 |
+
|
118 |
+
def forward(self, x, padding_mask, relative_embedding):
|
119 |
+
attention_output, attention_probs, _ = self.attention(x, x, padding_mask, relative_embedding)
|
120 |
+
x = x + attention_output
|
121 |
+
x = x + self.mlp(x)
|
122 |
+
return x, attention_probs
|
123 |
+
|
124 |
+
|
125 |
+
class DecoderLayer(nn.Module):
|
126 |
+
def __init__(self, config):
|
127 |
+
super().__init__()
|
128 |
+
self.self_attention = Attention(config, is_cross_attention=False)
|
129 |
+
self.cross_attention = Attention(config, is_cross_attention=True)
|
130 |
+
self.mlp = FeedForward(config)
|
131 |
+
|
132 |
+
def forward(self, x, autoreg_mask, encoder_output, encoder_padding_mask, self_relative_embedding, cross_relative_embedding, past_key_value=None):
|
133 |
+
query_offset = 0
|
134 |
+
if past_key_value is not None:
|
135 |
+
self_attn_past_key_value = past_key_value[:2]
|
136 |
+
cross_attn_past_key_value = past_key_value[2:]
|
137 |
+
query_offset = self_attn_past_key_value[0].size(2)
|
138 |
+
else:
|
139 |
+
self_attn_past_key_value, cross_attn_past_key_value = None, None
|
140 |
+
|
141 |
+
x_, self_attention_probs, self_key_value_state = self.self_attention(x, x, autoreg_mask, self_relative_embedding, past_key_value=self_attn_past_key_value, query_offset=query_offset)
|
142 |
+
x = x + x_
|
143 |
+
x_, cross_attention_probs, cross_key_value_state = self.cross_attention(x, encoder_output, encoder_padding_mask, cross_relative_embedding, past_key_value=cross_attn_past_key_value, query_offset=query_offset)
|
144 |
+
x = x + x_
|
145 |
+
x = x + self.mlp(x)
|
146 |
+
|
147 |
+
return x, self_attention_probs, cross_attention_probs, self_key_value_state + cross_key_value_state
|
148 |
+
|
149 |
+
|
150 |
+
class GeGLU(nn.Module):
|
151 |
+
def forward(self, x):
|
152 |
+
x, gate = x.chunk(2, dim=-1)
|
153 |
+
x = x * gelu_new(gate)
|
154 |
+
return x
|
155 |
+
|
156 |
+
|
157 |
+
class FeedForward(nn.Module):
|
158 |
+
def __init__(self, config):
|
159 |
+
super().__init__()
|
160 |
+
self.mlp = nn.Sequential(
|
161 |
+
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False),
|
162 |
+
nn.Linear(config.hidden_size, 2*config.intermediate_size, bias=False),
|
163 |
+
GeGLU(),
|
164 |
+
nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False),
|
165 |
+
nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
|
166 |
+
nn.Dropout(config.hidden_dropout_prob)
|
167 |
+
)
|
168 |
+
self.initialize(config.hidden_size)
|
169 |
+
|
170 |
+
def initialize(self, hidden_size):
|
171 |
+
std = math.sqrt(2.0 / (5.0 * hidden_size))
|
172 |
+
nn.init.trunc_normal_(self.mlp[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
173 |
+
nn.init.trunc_normal_(self.mlp[-2].weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
174 |
+
|
175 |
+
def forward(self, x):
|
176 |
+
return self.mlp(x)
|
177 |
+
|
178 |
+
|
179 |
+
class MaskedSoftmax(torch.autograd.Function):
|
180 |
+
@staticmethod
|
181 |
+
def forward(self, x, mask, dim):
|
182 |
+
self.dim = dim
|
183 |
+
if mask is not None:
|
184 |
+
x.masked_fill_(mask, float('-inf'))
|
185 |
+
x = torch.softmax(x, self.dim)
|
186 |
+
if mask is not None:
|
187 |
+
x.masked_fill_(mask, 0.0)
|
188 |
+
self.save_for_backward(x)
|
189 |
+
return x
|
190 |
+
|
191 |
+
@staticmethod
|
192 |
+
def backward(self, grad_output):
|
193 |
+
output, = self.saved_tensors
|
194 |
+
input_grad = softmax_backward_data(self, grad_output, output, self.dim, output)
|
195 |
+
return input_grad, None, None
|
196 |
+
|
197 |
+
|
198 |
+
class Attention(nn.Module):
|
199 |
+
def __init__(self, config, is_cross_attention=False):
|
200 |
+
super().__init__()
|
201 |
+
|
202 |
+
self.config = config
|
203 |
+
self.is_cross_attention = is_cross_attention
|
204 |
+
|
205 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
206 |
+
raise ValueError(f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}")
|
207 |
+
|
208 |
+
self.hidden_size = config.hidden_size
|
209 |
+
self.num_heads = config.num_attention_heads
|
210 |
+
self.head_size = config.hidden_size // config.num_attention_heads
|
211 |
+
|
212 |
+
self.in_proj_q = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
|
213 |
+
self.in_proj_k = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
|
214 |
+
self.in_proj_v = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
|
215 |
+
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
|
216 |
+
|
217 |
+
self.pre_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
|
218 |
+
self.post_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True)
|
219 |
+
|
220 |
+
position_indices = torch.arange(512, dtype=torch.long).unsqueeze(1) \
|
221 |
+
- torch.arange(512, dtype=torch.long).unsqueeze(0)
|
222 |
+
position_indices = self.make_log_bucket_position(position_indices, config.position_bucket_size, 512)
|
223 |
+
position_indices = config.position_bucket_size - 1 + position_indices
|
224 |
+
self.register_buffer("position_indices", position_indices, persistent=True)
|
225 |
+
|
226 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
227 |
+
self.scale = 1.0 / math.sqrt(3 * self.head_size)
|
228 |
+
self.initialize()
|
229 |
+
|
230 |
+
def make_log_bucket_position(self, relative_pos, bucket_size, max_position):
|
231 |
+
sign = torch.sign(relative_pos)
|
232 |
+
mid = bucket_size // 2
|
233 |
+
abs_pos = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos).clamp(max=max_position - 1))
|
234 |
+
log_pos = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position-1) / mid) * (mid - 1)).int() + mid
|
235 |
+
bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
|
236 |
+
return bucket_pos
|
237 |
+
|
238 |
+
def initialize(self):
|
239 |
+
std = math.sqrt(2.0 / (5.0 * self.hidden_size))
|
240 |
+
nn.init.trunc_normal_(self.in_proj_q.weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
241 |
+
nn.init.trunc_normal_(self.in_proj_k.weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
242 |
+
nn.init.trunc_normal_(self.in_proj_v.weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
243 |
+
nn.init.trunc_normal_(self.out_proj.weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
244 |
+
self.in_proj_q.bias.data.zero_()
|
245 |
+
self.in_proj_k.bias.data.zero_()
|
246 |
+
self.in_proj_v.bias.data.zero_()
|
247 |
+
self.out_proj.bias.data.zero_()
|
248 |
+
|
249 |
+
def forward(self, q, kv, attention_mask, relative_embedding, past_key_value=None, query_offset=0):
|
250 |
+
key_len, batch_size, _ = kv.size()
|
251 |
+
query_len, _, _ = q.size()
|
252 |
+
|
253 |
+
if not self.is_cross_attention or past_key_value is None or past_key_value[0].size(1) != kv.size(0):
|
254 |
+
kv = self.pre_layer_norm(kv)
|
255 |
+
key = self.in_proj_k(kv) # shape: [T, B, D]
|
256 |
+
value = self.in_proj_v(kv) # shape: [T, B, D]
|
257 |
+
key = key.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1) # shape: [BxH, T, D]
|
258 |
+
value = value.view(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1) # shape: [BxH, T, D]
|
259 |
+
|
260 |
+
if past_key_value is not None:
|
261 |
+
if not self.is_cross_attention:
|
262 |
+
key = torch.cat([past_key_value[0].flatten(0, 1), key], dim=1)
|
263 |
+
value = torch.cat([past_key_value[1].flatten(0, 1), value], dim=1)
|
264 |
+
key_len = key.size(1)
|
265 |
+
elif past_key_value[0].size(1) == kv.size(0):
|
266 |
+
key = past_key_value[0].flatten(0, 1)
|
267 |
+
value = past_key_value[1].flatten(0, 1)
|
268 |
+
|
269 |
+
if self.position_indices.size(0) < max(query_len, key_len):
|
270 |
+
position_indices = torch.arange(max(query_len, key_len), dtype=torch.long).unsqueeze(1) \
|
271 |
+
- torch.arange(max(query_len, key_len), dtype=torch.long).unsqueeze(0)
|
272 |
+
position_indices = self.make_log_bucket_position(position_indices, self.config.position_bucket_size, 512)
|
273 |
+
position_indices = self.config.position_bucket_size - 1 + position_indices
|
274 |
+
self.register_buffer("position_indices", position_indices.to(q.device), persistent=True)
|
275 |
+
|
276 |
+
q = self.pre_layer_norm(q)
|
277 |
+
query = self.in_proj_q(q) # shape: [T, B, D]
|
278 |
+
query = query.reshape(query_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
|
279 |
+
|
280 |
+
attention_scores = torch.bmm(query, key.transpose(1, 2) * self.scale)
|
281 |
+
|
282 |
+
query_pos = self.in_proj_q(self.dropout(relative_embedding)) # shape: [2T-1, D]
|
283 |
+
query_pos = query_pos.view(-1, self.num_heads, self.head_size) # shape: [2T-1, H, D]
|
284 |
+
key_pos = self.in_proj_k(self.dropout(relative_embedding)) # shape: [2T-1, D]
|
285 |
+
key_pos = key_pos.view(-1, self.num_heads, self.head_size) # shape: [2T-1, H, D]
|
286 |
+
|
287 |
+
query_ = query.view(batch_size, self.num_heads, query_len, self.head_size)
|
288 |
+
key_ = key.view(batch_size, self.num_heads, key_len, self.head_size)
|
289 |
+
|
290 |
+
attention_c_p = torch.einsum("bhqd,khd->bhqk", query_, key_pos.squeeze(1) * self.scale)
|
291 |
+
attention_p_c = torch.einsum("bhkd,qhd->bhqk", key_ * self.scale, query_pos.squeeze(1))
|
292 |
+
position_indices = self.position_indices[query_offset:query_offset+query_len, :key_len].expand(batch_size, self.num_heads, -1, -1)
|
293 |
+
attention_c_p = attention_c_p.gather(3, position_indices)
|
294 |
+
attention_p_c = attention_p_c.gather(2, position_indices)
|
295 |
+
|
296 |
+
attention_scores = attention_scores.view(batch_size, self.num_heads, query_len, key_len)
|
297 |
+
attention_scores.add_(attention_c_p)
|
298 |
+
attention_scores.add_(attention_p_c)
|
299 |
+
|
300 |
+
attention_probs = MaskedSoftmax.apply(attention_scores, attention_mask, -1)
|
301 |
+
|
302 |
+
attention_probs = self.dropout(attention_probs)
|
303 |
+
context = torch.bmm(attention_probs.flatten(0, 1), value) # shape: [B*H, Q, D]
|
304 |
+
context = context.transpose(0, 1).reshape(context.size(1), -1, self.hidden_size) # shape: [Q, B, H*D]
|
305 |
+
context = self.out_proj(context)
|
306 |
+
context = self.post_layer_norm(context)
|
307 |
+
context = self.dropout(context)
|
308 |
+
|
309 |
+
key = key.detach().unflatten(0, (-1, self.num_heads))
|
310 |
+
value = value.detach().unflatten(0, (-1, self.num_heads))
|
311 |
+
|
312 |
+
return context, attention_probs.detach(), (key, value)
|
313 |
+
|
314 |
+
|
315 |
+
class WordEmbedding(nn.Module):
|
316 |
+
def __init__(self, config):
|
317 |
+
super().__init__()
|
318 |
+
self.hidden_size = config.hidden_size
|
319 |
+
|
320 |
+
self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
|
321 |
+
self.word_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
|
322 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
323 |
+
|
324 |
+
self.initialize()
|
325 |
+
|
326 |
+
def initialize(self):
|
327 |
+
std = math.sqrt(2.0 / (5.0 * self.hidden_size))
|
328 |
+
nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
329 |
+
|
330 |
+
def forward(self, input_ids):
|
331 |
+
return self.dropout(self.word_layer_norm(self.word_embedding(input_ids)))
|
332 |
+
|
333 |
+
|
334 |
+
class RelativeEmbedding(nn.Module):
|
335 |
+
def __init__(self, config):
|
336 |
+
super().__init__()
|
337 |
+
self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size))
|
338 |
+
self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
339 |
+
|
340 |
+
self.initialize(config.hidden_size)
|
341 |
+
|
342 |
+
def initialize(self, hidden_size):
|
343 |
+
std = math.sqrt(2.0 / (5.0 * hidden_size))
|
344 |
+
nn.init.trunc_normal_(self.relative_embedding, mean=0.0, std=std, a=-2*std, b=2*std)
|
345 |
+
|
346 |
+
def forward(self):
|
347 |
+
return self.relative_layer_norm(self.relative_embedding)
|
348 |
+
|
349 |
+
|
350 |
+
#
|
351 |
+
# HuggingFace wrappers
|
352 |
+
#
|
353 |
+
|
354 |
+
class NorT5PreTrainedModel(PreTrainedModel):
|
355 |
+
config_class = NorT5Config
|
356 |
+
base_model_prefix = "norT5"
|
357 |
+
supports_gradient_checkpointing = True
|
358 |
+
|
359 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
360 |
+
if isinstance(module, Encoder):
|
361 |
+
module.activation_checkpointing = value
|
362 |
+
|
363 |
+
def _init_weights(self, module):
|
364 |
+
pass # everything is already initialized
|
365 |
+
|
366 |
+
|
367 |
+
class NorT5Model(NorT5PreTrainedModel):
|
368 |
+
def __init__(self, config, add_lm_layer=False, add_decoder=True):
|
369 |
+
super().__init__(config)
|
370 |
+
self.config = config
|
371 |
+
|
372 |
+
self.cls_token_id = config.cls_token_id
|
373 |
+
self.sep_token_id = config.sep_token_id
|
374 |
+
self.bos_token_id = config.bos_token_id
|
375 |
+
self.eos_token_id = config.eos_token_id
|
376 |
+
self.pad_token_id = config.pad_token_id
|
377 |
+
|
378 |
+
self.embedding = WordEmbedding(config)
|
379 |
+
self.encoder = Encoder(config, activation_checkpointing=False)
|
380 |
+
self.decoder = Decoder(config, activation_checkpointing=False) if add_decoder else None
|
381 |
+
self.classifier = MaskClassifier(config) if add_lm_layer else None
|
382 |
+
|
383 |
+
def get_input_embeddings(self):
|
384 |
+
return self.embedding.word_embedding
|
385 |
+
|
386 |
+
def set_input_embeddings(self, value):
|
387 |
+
self.embedding.word_embedding = value
|
388 |
+
|
389 |
+
def get_encoder(self):
|
390 |
+
class EncoderWrapper:
|
391 |
+
def __call__(cls, *args, **kwargs):
|
392 |
+
return cls.forward(*args, **kwargs)
|
393 |
+
|
394 |
+
def forward(
|
395 |
+
cls,
|
396 |
+
input_ids: Optional[torch.Tensor] = None,
|
397 |
+
attention_mask: Optional[torch.Tensor] = None,
|
398 |
+
output_hidden_states: Optional[bool] = None,
|
399 |
+
output_attentions: Optional[bool] = None,
|
400 |
+
return_dict: Optional[bool] = None,
|
401 |
+
):
|
402 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
403 |
+
|
404 |
+
return self.get_encoder_output(
|
405 |
+
input_ids, attention_mask, output_hidden_states, output_attentions, return_dict=return_dict
|
406 |
+
)
|
407 |
+
return EncoderWrapper()
|
408 |
+
|
409 |
+
def get_decoder(self):
|
410 |
+
return self.get_decoder_output
|
411 |
+
|
412 |
+
def set_decoder_special_tokens(self, target_id):
|
413 |
+
target_id.masked_fill_(target_id == self.cls_token_id, self.bos_token_id)
|
414 |
+
target_id.masked_fill_(target_id == self.sep_token_id, self.eos_token_id)
|
415 |
+
return target_id
|
416 |
+
|
417 |
+
def _shift_right(self, input_ids):
|
418 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
419 |
+
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
|
420 |
+
shifted_input_ids[..., 0] = self.bos_token_id
|
421 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, self.pad_token_id)
|
422 |
+
|
423 |
+
return shifted_input_ids
|
424 |
+
|
425 |
+
def get_encoder_output(
|
426 |
+
self,
|
427 |
+
input_ids: torch.Tensor = None,
|
428 |
+
attention_mask: Optional[torch.Tensor] = None,
|
429 |
+
output_hidden_states: Optional[bool] = None,
|
430 |
+
output_attentions: Optional[bool] = None,
|
431 |
+
return_dict = False
|
432 |
+
):
|
433 |
+
if input_ids is not None:
|
434 |
+
input_shape = input_ids.size()
|
435 |
+
else:
|
436 |
+
raise ValueError("You have to specify input_ids")
|
437 |
+
|
438 |
+
batch_size, seq_length = input_shape
|
439 |
+
device = input_ids.device
|
440 |
+
|
441 |
+
if attention_mask is None:
|
442 |
+
attention_mask = torch.zeros(batch_size, seq_length, dtype=torch.bool, device=device)
|
443 |
+
else:
|
444 |
+
attention_mask = ~attention_mask.bool()
|
445 |
+
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
446 |
+
|
447 |
+
static_embeddings = self.embedding(input_ids.t())
|
448 |
+
contextualized_embeddings, attention_probs = self.encoder(static_embeddings, attention_mask)
|
449 |
+
contextualized_embeddings = [e.transpose(0, 1) for e in contextualized_embeddings]
|
450 |
+
last_layer = contextualized_embeddings[-1]
|
451 |
+
contextualized_embeddings = [contextualized_embeddings[0]] + [
|
452 |
+
contextualized_embeddings[i] - contextualized_embeddings[i - 1]
|
453 |
+
for i in range(1, len(contextualized_embeddings))
|
454 |
+
]
|
455 |
+
|
456 |
+
if not return_dict:
|
457 |
+
return (
|
458 |
+
last_layer,
|
459 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
460 |
+
*([attention_probs] if output_attentions else [])
|
461 |
+
)
|
462 |
+
|
463 |
+
return BaseModelOutput(
|
464 |
+
last_hidden_state=last_layer,
|
465 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
466 |
+
attentions=attention_probs if output_attentions else None
|
467 |
+
)
|
468 |
+
|
469 |
+
def get_decoder_output(
|
470 |
+
self,
|
471 |
+
target_ids: torch.Tensor = None,
|
472 |
+
encoder_output: torch.Tensor = None,
|
473 |
+
attention_mask: Optional[torch.Tensor] = None,
|
474 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
475 |
+
use_cache: Optional[bool] = None,
|
476 |
+
output_hidden_states: Optional[bool] = None,
|
477 |
+
output_attentions: Optional[bool] = None,
|
478 |
+
return_dict = False
|
479 |
+
):
|
480 |
+
batch_size, seq_length, _ = encoder_output.shape
|
481 |
+
device = target_ids.device
|
482 |
+
|
483 |
+
if attention_mask is None:
|
484 |
+
attention_mask = torch.zeros(batch_size, seq_length, dtype=torch.bool, device=device)
|
485 |
+
else:
|
486 |
+
attention_mask = ~attention_mask.bool()
|
487 |
+
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
488 |
+
|
489 |
+
hidden_states, self_attention_p, cross_attention_p, key_value_states = self.decoder(
|
490 |
+
self.embedding(target_ids.t()),
|
491 |
+
encoder_output.transpose(0, 1),
|
492 |
+
attention_mask,
|
493 |
+
past_key_values
|
494 |
+
)
|
495 |
+
|
496 |
+
hidden_states = [e.transpose(0, 1) for e in hidden_states]
|
497 |
+
last_layer = hidden_states[-1]
|
498 |
+
hidden_states = [hidden_states[0]] + [
|
499 |
+
hidden_states[i] - hidden_states[i - 1]
|
500 |
+
for i in range(1, len(hidden_states))
|
501 |
+
]
|
502 |
+
|
503 |
+
if not return_dict:
|
504 |
+
return (
|
505 |
+
last_layer,
|
506 |
+
*([key_value_states] if use_cache else []),
|
507 |
+
*([hidden_states] if output_hidden_states else []),
|
508 |
+
*([self_attention_p] if output_attentions else []),
|
509 |
+
*([cross_attention_p] if output_attentions else []),
|
510 |
+
)
|
511 |
+
|
512 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
513 |
+
last_hidden_state=last_layer,
|
514 |
+
past_key_values=key_value_states if use_cache else None,
|
515 |
+
hidden_states=hidden_states if output_hidden_states else None,
|
516 |
+
attentions=self_attention_p if output_attentions else None,
|
517 |
+
cross_attentions=cross_attention_p if output_attentions else None
|
518 |
+
)
|
519 |
+
|
520 |
+
|
521 |
+
def forward(
|
522 |
+
self,
|
523 |
+
input_ids: Optional[torch.LongTensor] = None,
|
524 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
525 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
526 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
527 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
528 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
529 |
+
use_cache: Optional[bool] = None,
|
530 |
+
output_attentions: Optional[bool] = None,
|
531 |
+
output_hidden_states: Optional[bool] = None,
|
532 |
+
return_dict: Optional[bool] = None
|
533 |
+
):
|
534 |
+
|
535 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
536 |
+
|
537 |
+
decoder_input_ids = self.set_decoder_special_tokens(decoder_input_ids)
|
538 |
+
|
539 |
+
if encoder_outputs is None:
|
540 |
+
encoder_outputs = self.get_encoder_output(
|
541 |
+
input_ids, attention_mask, output_hidden_states, output_attentions, return_dict
|
542 |
+
)
|
543 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
544 |
+
encoder_outputs = BaseModelOutput(
|
545 |
+
last_hidden_state=encoder_outputs[0],
|
546 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
547 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
548 |
+
)
|
549 |
+
|
550 |
+
decoder_outputs = self.get_decoder_output(
|
551 |
+
decoder_input_ids, encoder_outputs[0], attention_mask, past_key_values, use_cache, output_hidden_states, output_attentions, return_dict
|
552 |
+
)
|
553 |
+
|
554 |
+
if not return_dict:
|
555 |
+
return decoder_outputs + encoder_outputs
|
556 |
+
|
557 |
+
return Seq2SeqModelOutput(
|
558 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
559 |
+
past_key_values=decoder_outputs.past_key_values,
|
560 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
561 |
+
decoder_attentions=decoder_outputs.attentions,
|
562 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
563 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
564 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
565 |
+
encoder_attentions=encoder_outputs.attentions,
|
566 |
+
)
|
567 |
+
|
568 |
+
|
569 |
+
class NorT5ForConditionalGeneration(NorT5Model):
|
570 |
+
|
571 |
+
def __init__(self, config):
|
572 |
+
super().__init__(config, add_lm_layer=True)
|
573 |
+
|
574 |
+
def forward(
|
575 |
+
self,
|
576 |
+
input_ids: Optional[torch.LongTensor] = None,
|
577 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
578 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
579 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
580 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
581 |
+
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
582 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
583 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
584 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
585 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
586 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
587 |
+
labels: Optional[torch.LongTensor] = None,
|
588 |
+
use_cache: Optional[bool] = None,
|
589 |
+
output_attentions: Optional[bool] = None,
|
590 |
+
output_hidden_states: Optional[bool] = None,
|
591 |
+
return_dict: Optional[bool] = None,
|
592 |
+
):
|
593 |
+
use_cache = use_cache if use_cache is not None else getattr(self.config, "use_cache", False)
|
594 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
595 |
+
|
596 |
+
if encoder_outputs is None:
|
597 |
+
encoder_outputs = self.get_encoder_output(
|
598 |
+
input_ids, attention_mask, output_hidden_states, output_attentions, return_dict
|
599 |
+
)
|
600 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
601 |
+
encoder_outputs = BaseModelOutput(
|
602 |
+
last_hidden_state=encoder_outputs[0],
|
603 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
604 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
605 |
+
)
|
606 |
+
|
607 |
+
if labels is not None:
|
608 |
+
labels = self.set_decoder_special_tokens(labels)
|
609 |
+
|
610 |
+
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
|
611 |
+
decoder_input_ids = self._shift_right(labels)
|
612 |
+
elif decoder_input_ids is not None:
|
613 |
+
decoder_input_ids = self.set_decoder_special_tokens(decoder_input_ids)
|
614 |
+
|
615 |
+
decoder_outputs = self.get_decoder_output(
|
616 |
+
decoder_input_ids, encoder_outputs[0], attention_mask, past_key_values, use_cache, output_hidden_states, output_attentions, return_dict
|
617 |
+
)
|
618 |
+
lm_logits = self.classifier(decoder_outputs[0])
|
619 |
+
|
620 |
+
loss = None
|
621 |
+
if labels is not None:
|
622 |
+
labels.masked_fill_(labels == self.pad_token_id, -100)
|
623 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
|
624 |
+
loss = loss_fct(lm_logits.flatten(0, 1), labels.flatten())
|
625 |
+
|
626 |
+
if not return_dict:
|
627 |
+
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
|
628 |
+
return ((loss,) + output) if loss is not None else output
|
629 |
+
|
630 |
+
return Seq2SeqLMOutput(
|
631 |
+
loss=loss,
|
632 |
+
logits=lm_logits,
|
633 |
+
past_key_values=decoder_outputs.past_key_values,
|
634 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
635 |
+
decoder_attentions=decoder_outputs.attentions,
|
636 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
637 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
638 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
639 |
+
encoder_attentions=encoder_outputs.attentions,
|
640 |
+
)
|
641 |
+
|
642 |
+
def prepare_inputs_for_generation(
|
643 |
+
self,
|
644 |
+
input_ids,
|
645 |
+
past_key_values=None,
|
646 |
+
attention_mask=None,
|
647 |
+
head_mask=None,
|
648 |
+
decoder_head_mask=None,
|
649 |
+
cross_attn_head_mask=None,
|
650 |
+
use_cache=None,
|
651 |
+
encoder_outputs=None,
|
652 |
+
**kwargs,
|
653 |
+
):
|
654 |
+
if past_key_values is not None:
|
655 |
+
input_ids = input_ids[:, -1:]
|
656 |
+
|
657 |
+
return {
|
658 |
+
"decoder_input_ids": input_ids,
|
659 |
+
"past_key_values": past_key_values,
|
660 |
+
"encoder_outputs": encoder_outputs,
|
661 |
+
"attention_mask": attention_mask,
|
662 |
+
"head_mask": head_mask,
|
663 |
+
"decoder_head_mask": decoder_head_mask,
|
664 |
+
"cross_attn_head_mask": cross_attn_head_mask,
|
665 |
+
"use_cache": use_cache,
|
666 |
+
}
|
667 |
+
|
668 |
+
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
|
669 |
+
return self._shift_right(labels)
|
670 |
+
|
671 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
672 |
+
# if decoder past is not included in output
|
673 |
+
# speedy decoding is disabled and no need to reorder
|
674 |
+
if past_key_values is None:
|
675 |
+
print("You might want to consider setting `use_cache=True` to speed up decoding")
|
676 |
+
return past_key_values
|
677 |
+
|
678 |
+
reordered_decoder_past = ()
|
679 |
+
for layer_past_states in past_key_values:
|
680 |
+
# get the correct batch idx from layer past batch dim
|
681 |
+
# batch dim of `past` is at 2nd position
|
682 |
+
reordered_layer_past_states = ()
|
683 |
+
for layer_past_state in layer_past_states:
|
684 |
+
# need to set correct `past` for each of the four key / value states
|
685 |
+
layer_past_state = layer_past_state.index_select(0, beam_idx.to(layer_past_state.device))
|
686 |
+
reordered_layer_past_states = reordered_layer_past_states + (layer_past_state,)
|
687 |
+
|
688 |
+
assert reordered_layer_past_states[0].shape == layer_past_states[0].shape
|
689 |
+
assert len(reordered_layer_past_states) == len(layer_past_states)
|
690 |
+
|
691 |
+
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
|
692 |
+
return reordered_decoder_past
|
693 |
+
|
694 |
+
|
695 |
+
class NorT5Encoder(NorT5Model):
|
696 |
+
def __init__(self, config):
|
697 |
+
super().__init__(config, add_lm_layer=False, add_decoder=True)
|
698 |
+
|
699 |
+
def forward(
|
700 |
+
self,
|
701 |
+
input_ids: Optional[torch.Tensor] = None,
|
702 |
+
attention_mask: Optional[torch.Tensor] = None,
|
703 |
+
output_hidden_states: Optional[bool] = None,
|
704 |
+
output_attentions: Optional[bool] = None,
|
705 |
+
return_dict: Optional[bool] = None,
|
706 |
+
):
|
707 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
708 |
+
|
709 |
+
return self.get_encoder_output(
|
710 |
+
input_ids, attention_mask, output_hidden_states, output_attentions, return_dict=return_dict
|
711 |
+
)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fb08bd3a0fea16f20137417c1ea2b991be43aa2ac0f1c4a3d84cdf5eb708a0d
|
3 |
+
size 1125877210
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "[BOS]", "eos_token": "[EOS]", "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
3 |
+
}
|