|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from transformers.pytorch_utils import softmax_backward_data |
|
from torch.utils import checkpoint |
|
|
|
from configuration_nort5 import NorT5Config |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.activations import gelu_new |
|
from transformers.modeling_outputs import ( |
|
Seq2SeqModelOutput, Seq2SeqLMOutput, BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions |
|
) |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__(self, config, activation_checkpointing=False): |
|
super().__init__() |
|
self.main_input_name = "input_ids" |
|
|
|
self.relative_embedding = RelativeEmbedding(config) |
|
self.layers = nn.ModuleList([EncoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
|
|
for i, layer in enumerate(self.layers): |
|
layer.mlp.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i))) |
|
layer.mlp.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i))) |
|
|
|
self.activation_checkpointing = activation_checkpointing |
|
|
|
def forward(self, hidden_states, attention_mask): |
|
relative_embedding = self.relative_embedding() |
|
hidden_states, attention_probs = [hidden_states], [] |
|
|
|
for layer in self.layers: |
|
if self.activation_checkpointing: |
|
hidden_state, attention_p = checkpoint.checkpoint(layer, hidden_states[-1], attention_mask, relative_embedding) |
|
else: |
|
hidden_state, attention_p = layer(hidden_states[-1], attention_mask, relative_embedding) |
|
|
|
hidden_states.append(hidden_state) |
|
attention_probs.append(attention_p) |
|
|
|
return hidden_states, attention_probs |
|
|
|
|
|
class Decoder(nn.Module): |
|
def __init__(self, config, activation_checkpointing=False): |
|
super().__init__() |
|
self.self_relative_embedding = RelativeEmbedding(config) |
|
self.cross_relative_embedding = RelativeEmbedding(config) |
|
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
|
|
for i, layer in enumerate(self.layers): |
|
layer.mlp.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i))) |
|
layer.mlp.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i))) |
|
|
|
self.activation_checkpointing = activation_checkpointing |
|
|
|
def forward(self, x, encoder_output, encoder_padding_mask, past_key_values=None): |
|
self_relative_embedding = self.self_relative_embedding() |
|
cross_relative_embedding = self.cross_relative_embedding() |
|
|
|
if past_key_values is not None: |
|
autoreg_mask = torch.triu( |
|
torch.full((x.size(0), x.size(0)), True, device=x.device), |
|
diagonal=1 |
|
) |
|
else: |
|
autoreg_mask = None |
|
|
|
|
|
if past_key_values is None: |
|
past_key_values = [None] * len(self.layers) |
|
|
|
hidden_states, self_attention_probs, cross_attention_probs, key_value_states = [x], [], [], [] |
|
for layer, past_key_value in zip(self.layers, past_key_values): |
|
if self.activation_checkpointing: |
|
hidden_state, self_attention_p, cross_attention_p, key_value_state = checkpoint.checkpoint(layer, hidden_states[-1], autoreg_mask, encoder_output, encoder_padding_mask, self_relative_embedding, cross_relative_embedding, past_key_value=None) |
|
else: |
|
hidden_state, self_attention_p, cross_attention_p, key_value_state = layer(hidden_states[-1], autoreg_mask, encoder_output, encoder_padding_mask, self_relative_embedding, cross_relative_embedding, past_key_value=past_key_value) |
|
|
|
hidden_states.append(hidden_state) |
|
self_attention_probs.append(self_attention_p) |
|
cross_attention_probs.append(cross_attention_p) |
|
key_value_states.append(key_value_state) |
|
|
|
return hidden_states, self_attention_probs, cross_attention_probs, key_value_states |
|
|
|
|
|
class MaskClassifier(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.nonlinearity = nn.Sequential( |
|
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False), |
|
nn.Dropout(config.hidden_dropout_prob), |
|
nn.Linear(config.hidden_size, config.vocab_size) |
|
) |
|
self.initialize(config.hidden_size) |
|
|
|
def initialize(self, hidden_size): |
|
std = math.sqrt(2.0 / (5.0 * hidden_size)) |
|
nn.init.trunc_normal_(self.nonlinearity[-1].weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
self.nonlinearity[-1].bias.data.zero_() |
|
|
|
def forward(self, x): |
|
x = self.nonlinearity(x) |
|
return x |
|
|
|
|
|
class EncoderLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.attention = Attention(config, is_cross_attention=False) |
|
self.mlp = FeedForward(config) |
|
|
|
def forward(self, x, padding_mask, relative_embedding): |
|
attention_output, attention_probs, _ = self.attention(x, x, padding_mask, relative_embedding) |
|
x = x + attention_output |
|
x = x + self.mlp(x) |
|
return x, attention_probs |
|
|
|
|
|
class DecoderLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.self_attention = Attention(config, is_cross_attention=False) |
|
self.cross_attention = Attention(config, is_cross_attention=True) |
|
self.mlp = FeedForward(config) |
|
|
|
def forward(self, x, autoreg_mask, encoder_output, encoder_padding_mask, self_relative_embedding, cross_relative_embedding, past_key_value=None): |
|
query_offset = 0 |
|
if past_key_value is not None: |
|
self_attn_past_key_value = past_key_value[:2] |
|
cross_attn_past_key_value = past_key_value[2:] |
|
query_offset = self_attn_past_key_value[0].size(1) |
|
else: |
|
self_attn_past_key_value, cross_attn_past_key_value = None, None |
|
|
|
x_, self_attention_probs, self_key_value_state = self.self_attention(x, x, autoreg_mask, self_relative_embedding, past_key_value=self_attn_past_key_value, query_offset=query_offset) |
|
x = x + x_ |
|
x_, cross_attention_probs, cross_key_value_state = self.cross_attention(x, encoder_output, encoder_padding_mask, cross_relative_embedding, past_key_value=cross_attn_past_key_value, query_offset=query_offset) |
|
x = x + x_ |
|
x = x + self.mlp(x) |
|
|
|
return x, self_attention_probs, cross_attention_probs, self_key_value_state + cross_key_value_state |
|
|
|
|
|
class GeGLU(nn.Module): |
|
def forward(self, x): |
|
x, gate = x.chunk(2, dim=-1) |
|
x = x * gelu_new(gate) |
|
return x |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.mlp = nn.Sequential( |
|
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False), |
|
nn.Linear(config.hidden_size, 2*config.intermediate_size, bias=False), |
|
GeGLU(), |
|
nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False), |
|
nn.Linear(config.intermediate_size, config.hidden_size, bias=False), |
|
nn.Dropout(config.hidden_dropout_prob) |
|
) |
|
self.initialize(config.hidden_size) |
|
|
|
def initialize(self, hidden_size): |
|
std = math.sqrt(2.0 / (5.0 * hidden_size)) |
|
nn.init.trunc_normal_(self.mlp[1].weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
nn.init.trunc_normal_(self.mlp[-2].weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
|
|
def forward(self, x): |
|
return self.mlp(x) |
|
|
|
|
|
class MaskedSoftmax(torch.autograd.Function): |
|
@staticmethod |
|
def forward(self, x, mask, dim): |
|
self.dim = dim |
|
if mask is not None: |
|
x.masked_fill_(mask, float('-inf')) |
|
x = torch.softmax(x, self.dim) |
|
if mask is not None: |
|
x.masked_fill_(mask, 0.0) |
|
self.save_for_backward(x) |
|
return x |
|
|
|
@staticmethod |
|
def backward(self, grad_output): |
|
output, = self.saved_tensors |
|
input_grad = softmax_backward_data(self, grad_output, output, self.dim, output) |
|
return input_grad, None, None |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, config, is_cross_attention=False): |
|
super().__init__() |
|
|
|
self.config = config |
|
self.is_cross_attention = is_cross_attention |
|
|
|
if config.hidden_size % config.num_attention_heads != 0: |
|
raise ValueError(f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}") |
|
|
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_size = config.hidden_size // config.num_attention_heads |
|
|
|
self.in_proj_q = nn.Linear(config.hidden_size, config.hidden_size, bias=True) |
|
self.in_proj_k = nn.Linear(config.hidden_size, config.hidden_size, bias=True) |
|
self.in_proj_v = nn.Linear(config.hidden_size, config.hidden_size, bias=True) |
|
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True) |
|
|
|
self.pre_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False) |
|
self.post_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True) |
|
|
|
position_indices = torch.arange(512, dtype=torch.long).unsqueeze(1) \ |
|
- torch.arange(512, dtype=torch.long).unsqueeze(0) |
|
position_indices = self.make_log_bucket_position(position_indices, config.position_bucket_size, 512) |
|
position_indices = config.position_bucket_size - 1 + position_indices |
|
self.register_buffer("position_indices", position_indices, persistent=True) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
self.scale = 1.0 / math.sqrt(3 * self.head_size) |
|
self.initialize() |
|
|
|
def make_log_bucket_position(self, relative_pos, bucket_size, max_position): |
|
sign = torch.sign(relative_pos) |
|
mid = bucket_size // 2 |
|
abs_pos = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos).clamp(max=max_position - 1)) |
|
log_pos = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position-1) / mid) * (mid - 1)).int() + mid |
|
bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long() |
|
return bucket_pos |
|
|
|
def initialize(self): |
|
std = math.sqrt(2.0 / (5.0 * self.hidden_size)) |
|
nn.init.trunc_normal_(self.in_proj_q.weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
nn.init.trunc_normal_(self.in_proj_k.weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
nn.init.trunc_normal_(self.in_proj_v.weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
nn.init.trunc_normal_(self.out_proj.weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
self.in_proj_q.bias.data.zero_() |
|
self.in_proj_k.bias.data.zero_() |
|
self.in_proj_v.bias.data.zero_() |
|
self.out_proj.bias.data.zero_() |
|
|
|
def forward(self, q, kv, attention_mask, relative_embedding, past_key_value=None, query_offset=0): |
|
key_len, batch_size, _ = kv.size() |
|
query_len, _, _ = q.size() |
|
|
|
if not self.is_cross_attention or past_key_value is None or past_key_value[0].size(1) != kv.size(0): |
|
kv = self.pre_layer_norm(kv) |
|
key = self.in_proj_k(kv) |
|
value = self.in_proj_v(kv) |
|
key = key.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1) |
|
value = value.view(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1) |
|
|
|
if past_key_value is not None: |
|
if not self.is_cross_attention: |
|
key = torch.cat([past_key_value[0], key], dim=1) |
|
value = torch.cat([past_key_value[1], value], dim=1) |
|
key_len = key.size(1) |
|
elif past_key_value[0].size(1) == kv.size(0): |
|
key = past_key_value[0] |
|
value = past_key_value[1] |
|
|
|
if self.position_indices.size(0) < max(query_len, key_len): |
|
position_indices = torch.arange(max(query_len, key_len), dtype=torch.long).unsqueeze(1) \ |
|
- torch.arange(max(query_len, key_len), dtype=torch.long).unsqueeze(0) |
|
position_indices = self.make_log_bucket_position(position_indices, self.config.position_bucket_size, 512) |
|
position_indices = self.config.position_bucket_size - 1 + position_indices |
|
self.register_buffer("position_indices", position_indices.to(q.device), persistent=True) |
|
|
|
q = self.pre_layer_norm(q) |
|
query = self.in_proj_q(q) |
|
query = query.reshape(query_len, batch_size * self.num_heads, self.head_size).transpose(0, 1) |
|
|
|
attention_scores = torch.bmm(query, key.transpose(1, 2) * self.scale) |
|
|
|
query_pos = self.in_proj_q(self.dropout(relative_embedding)) |
|
query_pos = query_pos.view(-1, self.num_heads, self.head_size) |
|
key_pos = self.in_proj_k(self.dropout(relative_embedding)) |
|
key_pos = key_pos.view(-1, self.num_heads, self.head_size) |
|
|
|
query_ = query.view(batch_size, self.num_heads, query_len, self.head_size) |
|
key_ = key.view(batch_size, self.num_heads, key_len, self.head_size) |
|
|
|
attention_c_p = torch.einsum("bhqd,khd->bhqk", query_, key_pos.squeeze(1) * self.scale) |
|
attention_p_c = torch.einsum("bhkd,qhd->bhqk", key_ * self.scale, query_pos.squeeze(1)) |
|
position_indices = self.position_indices[query_offset:query_offset+query_len, :key_len].expand(batch_size, self.num_heads, -1, -1) |
|
attention_c_p = attention_c_p.gather(3, position_indices) |
|
attention_p_c = attention_p_c.gather(2, position_indices) |
|
|
|
attention_scores = attention_scores.view(batch_size, self.num_heads, query_len, key_len) |
|
attention_scores.add_(attention_c_p) |
|
attention_scores.add_(attention_p_c) |
|
|
|
attention_probs = MaskedSoftmax.apply(attention_scores, attention_mask, -1) |
|
|
|
attention_probs = self.dropout(attention_probs) |
|
context = torch.bmm(attention_probs.flatten(0, 1), value) |
|
context = context.transpose(0, 1).reshape(context.size(1), -1, self.hidden_size) |
|
context = self.out_proj(context) |
|
context = self.post_layer_norm(context) |
|
context = self.dropout(context) |
|
|
|
return context, attention_probs.detach(), (key.detach(), value.detach()) |
|
|
|
|
|
class WordEmbedding(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
|
|
self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size) |
|
self.word_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
self.initialize() |
|
|
|
def initialize(self): |
|
std = math.sqrt(2.0 / (5.0 * self.hidden_size)) |
|
nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
|
|
def forward(self, input_ids): |
|
return self.dropout(self.word_layer_norm(self.word_embedding(input_ids))) |
|
|
|
|
|
class RelativeEmbedding(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size)) |
|
self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
self.initialize(config.hidden_size) |
|
|
|
def initialize(self, hidden_size): |
|
std = math.sqrt(2.0 / (5.0 * hidden_size)) |
|
nn.init.trunc_normal_(self.relative_embedding, mean=0.0, std=std, a=-2*std, b=2*std) |
|
|
|
def forward(self): |
|
return self.relative_layer_norm(self.relative_embedding) |
|
|
|
|
|
|
|
|
|
|
|
|
|
class NorT5PreTrainedModel(PreTrainedModel): |
|
config_class = NorT5Config |
|
base_model_prefix = "norT5" |
|
supports_gradient_checkpointing = True |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, Encoder): |
|
module.activation_checkpointing = value |
|
|
|
def _init_weights(self, module): |
|
pass |
|
|
|
|
|
class NorT5Model(NorT5PreTrainedModel): |
|
def __init__(self, config, add_lm_layer=False, add_decoder=True): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.cls_token_id = config.cls_token_id |
|
self.sep_token_id = config.sep_token_id |
|
self.bos_token_id = config.bos_token_id |
|
self.eos_token_id = config.eos_token_id |
|
self.pad_token_id = config.pad_token_id |
|
|
|
self.embedding = WordEmbedding(config) |
|
self.encoder = Encoder(config, activation_checkpointing=False) |
|
self.decoder = Decoder(config, activation_checkpointing=False) if add_decoder else None |
|
self.classifier = MaskClassifier(config) if add_lm_layer else None |
|
|
|
def get_input_embeddings(self): |
|
return self.embedding.word_embedding |
|
|
|
def set_input_embeddings(self, value): |
|
self.embedding.word_embedding = value |
|
|
|
def get_encoder(self): |
|
return self.get_encoder_output |
|
|
|
def get_decoder(self): |
|
return self.get_decoder_output |
|
|
|
def set_decoder_special_tokens(self, target_id): |
|
target_id.masked_fill_(target_id == self.cls_token_id, self.bos_token_id) |
|
target_id.masked_fill_(target_id == self.sep_token_id, self.eos_token_id) |
|
return target_id |
|
|
|
def _shift_right(self, input_ids): |
|
shifted_input_ids = input_ids.new_zeros(input_ids.shape) |
|
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() |
|
shifted_input_ids[..., 0] = self.bos_token_id |
|
shifted_input_ids.masked_fill_(shifted_input_ids == -100, self.pad_token_id) |
|
|
|
return shifted_input_ids |
|
|
|
def get_encoder_output( |
|
self, |
|
input_ids: torch.Tensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
return_dict = False |
|
): |
|
if input_ids is not None: |
|
input_shape = input_ids.size() |
|
else: |
|
raise ValueError("You have to specify input_ids") |
|
|
|
batch_size, seq_length = input_shape |
|
device = input_ids.device |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.zeros(batch_size, seq_length, dtype=torch.bool, device=device) |
|
else: |
|
attention_mask = ~attention_mask.bool() |
|
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) |
|
|
|
static_embeddings = self.embedding(input_ids.t()) |
|
contextualized_embeddings, attention_probs = self.encoder(static_embeddings, attention_mask) |
|
contextualized_embeddings = [e.transpose(0, 1) for e in contextualized_embeddings] |
|
last_layer = contextualized_embeddings[-1] |
|
contextualized_embeddings = [contextualized_embeddings[0]] + [ |
|
contextualized_embeddings[i] - contextualized_embeddings[i - 1] |
|
for i in range(1, len(contextualized_embeddings)) |
|
] |
|
|
|
if not return_dict: |
|
return ( |
|
last_layer, |
|
*([contextualized_embeddings] if output_hidden_states else []), |
|
*([attention_probs] if output_attentions else []) |
|
) |
|
|
|
return BaseModelOutput( |
|
last_hidden_state=last_layer, |
|
hidden_states=contextualized_embeddings if output_hidden_states else None, |
|
attentions=attention_probs if output_attentions else None |
|
) |
|
|
|
def get_decoder_output( |
|
self, |
|
target_ids: torch.Tensor = None, |
|
encoder_output: torch.Tensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
return_dict = False |
|
): |
|
batch_size, seq_length, _ = encoder_output.shape |
|
device = target_ids.device |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.zeros(batch_size, seq_length, dtype=torch.bool, device=device) |
|
else: |
|
attention_mask = ~attention_mask.bool() |
|
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) |
|
|
|
hidden_states, self_attention_p, cross_attention_p, key_value_states = self.decoder( |
|
self.embedding(target_ids.t()), |
|
encoder_output.transpose(0, 1), |
|
attention_mask, |
|
past_key_values |
|
) |
|
|
|
hidden_states = [e.transpose(0, 1) for e in hidden_states] |
|
last_layer = hidden_states[-1] |
|
hidden_states = [hidden_states[0]] + [ |
|
hidden_states[i] - hidden_states[i - 1] |
|
for i in range(1, len(hidden_states)) |
|
] |
|
|
|
if not return_dict: |
|
return ( |
|
last_layer, |
|
*([key_value_states] if use_cache else []), |
|
*([hidden_states] if output_hidden_states else []), |
|
*([self_attention_p] if output_attentions else []), |
|
*([cross_attention_p] if output_attentions else []), |
|
) |
|
|
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=last_layer, |
|
past_key_values=key_value_states if use_cache else None, |
|
hidden_states=hidden_states if output_hidden_states else None, |
|
attentions=self_attention_p if output_attentions else None, |
|
cross_attentions=cross_attention_p if output_attentions else None |
|
) |
|
|
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
decoder_attention_mask: Optional[torch.BoolTensor] = None, |
|
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None |
|
): |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
decoder_input_ids = self.set_decoder_special_tokens(decoder_input_ids) |
|
|
|
if encoder_outputs is None: |
|
encoder_outputs = self.get_encoder_output( |
|
input_ids, attention_mask, output_hidden_states, output_attentions, return_dict |
|
) |
|
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): |
|
encoder_outputs = BaseModelOutput( |
|
last_hidden_state=encoder_outputs[0], |
|
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, |
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, |
|
) |
|
|
|
decoder_outputs = self.get_decoder_output( |
|
decoder_input_ids, encoder_outputs[0], attention_mask, past_key_values, use_cache, output_hidden_states, output_attentions, return_dict |
|
) |
|
|
|
if not return_dict: |
|
return decoder_outputs + encoder_outputs |
|
|
|
return Seq2SeqModelOutput( |
|
last_hidden_state=decoder_outputs.last_hidden_state, |
|
past_key_values=decoder_outputs.past_key_values, |
|
decoder_hidden_states=decoder_outputs.hidden_states, |
|
decoder_attentions=decoder_outputs.attentions, |
|
cross_attentions=decoder_outputs.cross_attentions, |
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state, |
|
encoder_hidden_states=encoder_outputs.hidden_states, |
|
encoder_attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
class NorT5ForConditionalGeneration(NorT5Model): |
|
|
|
def __init__(self, config): |
|
super().__init__(config, add_lm_layer=True) |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
decoder_attention_mask: Optional[torch.BoolTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
decoder_head_mask: Optional[torch.FloatTensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
): |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if encoder_outputs is None: |
|
encoder_outputs = self.get_encoder_output( |
|
input_ids, attention_mask, output_hidden_states, output_attentions, return_dict |
|
) |
|
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): |
|
encoder_outputs = BaseModelOutput( |
|
last_hidden_state=encoder_outputs[0], |
|
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, |
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, |
|
) |
|
|
|
if labels is not None: |
|
labels = self.set_decoder_special_tokens(labels) |
|
|
|
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: |
|
decoder_input_ids = self._shift_right(labels) |
|
elif decoder_input_ids is not None: |
|
decoder_input_ids = self.set_decoder_special_tokens(decoder_input_ids) |
|
|
|
decoder_outputs = self.get_decoder_output( |
|
decoder_input_ids, encoder_outputs[0], attention_mask, past_key_values, use_cache, output_hidden_states, output_attentions, return_dict |
|
) |
|
lm_logits = self.classifier(decoder_outputs[0]) |
|
|
|
loss = None |
|
if labels is not None: |
|
labels.masked_fill_(labels == self.pad_token_id, -100) |
|
loss_fct = nn.CrossEntropyLoss(ignore_index=-100) |
|
loss = loss_fct(lm_logits.flatten(0, 1), labels.flatten()) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return Seq2SeqLMOutput( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=decoder_outputs.past_key_values, |
|
decoder_hidden_states=decoder_outputs.hidden_states, |
|
decoder_attentions=decoder_outputs.attentions, |
|
cross_attentions=decoder_outputs.cross_attentions, |
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state, |
|
encoder_hidden_states=encoder_outputs.hidden_states, |
|
encoder_attentions=encoder_outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
head_mask=None, |
|
decoder_head_mask=None, |
|
cross_attn_head_mask=None, |
|
use_cache=None, |
|
encoder_outputs=None, |
|
**kwargs, |
|
): |
|
if past_key_values is not None: |
|
input_ids = input_ids[:, -1:] |
|
|
|
return { |
|
"decoder_input_ids": input_ids, |
|
"past_key_values": past_key_values, |
|
"encoder_outputs": encoder_outputs, |
|
"attention_mask": attention_mask, |
|
"head_mask": head_mask, |
|
"decoder_head_mask": decoder_head_mask, |
|
"cross_attn_head_mask": cross_attn_head_mask, |
|
"use_cache": use_cache, |
|
} |
|
|
|
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): |
|
return self._shift_right(labels) |
|
|
|
def _reorder_cache(self, past_key_values, beam_idx): |
|
|
|
|
|
if past_key_values is None: |
|
print("You might want to consider setting `use_cache=True` to speed up decoding") |
|
return past_key_values |
|
|
|
reordered_decoder_past = () |
|
for layer_past_states in past_key_values: |
|
|
|
|
|
reordered_layer_past_states = () |
|
for layer_past_state in layer_past_states: |
|
|
|
layer_past_state = layer_past_state.unflatten(0, (-1, self.config.num_attention_heads)) |
|
layer_past_state = layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)) |
|
layer_past_state = layer_past_state.flatten(0, 1) |
|
reordered_layer_past_states = reordered_layer_past_states + (layer_past_state,) |
|
|
|
assert reordered_layer_past_states[0].shape == layer_past_states[0].shape |
|
assert len(reordered_layer_past_states) == len(layer_past_states) |
|
|
|
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) |
|
return reordered_decoder_past |
|
|
|
|
|
class NorT5Encoder(NorT5Model): |
|
def __init__(self, config): |
|
super().__init__(config, add_lm_layer=False, add_decoder=True) |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
): |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
return self.get_encoder_output( |
|
input_ids, attention_mask, output_hidden_states, output_attentions, return_dict=return_dict |
|
) |
|
|