File size: 52,586 Bytes
c45d283 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 |
# -*- coding: utf-8; -*-
# GraphaLogue Analyzer
# Marco Kuhlmann <[email protected]>
# Stephan Oepen <[email protected]>
from datetime import datetime;
import html;
import operator;
from pathlib import Path;
import sys;
import score.core;
#
# default values on edge attributes, which will be removed in normalization.
# because all constants are normalized to lowercase strings prior to testing
# for default values, we need to deal in the normalized values here.
#
ATTRIBUTE_DEFAULTS = {"remote": "false",
"effective": "false", "member": "false"};
FLAVORS = {"dm": 0, "psd": 0, "ptg": 0,
"eds": 1, "ptg": 1, "ucca": 1,
"amr": 2, "drg": 2};
class Node(object):
def __init__(self, id, label = None, properties = None, values = None,
anchors = None, top = False, type = 1, anchorings = None):
self.id = id
self.type = type;
self.label = label;
self.properties = properties;
self.values = values;
self.anchorings = anchorings;
self.incoming_edges = set()
self.outgoing_edges = set()
self.anchors = anchors;
self.is_top = top
def set_property(self, name, value):
if self.properties and self.values:
try:
i = self.properties.index(name);
self.values[i] = value;
except ValueError:
self.properties.append(name);
self.values.append(value);
else:
self.properties = [name];
self.values = [value];
def set_anchoring(self, name, value):
#
# _fix_me_
# this (currently only used in the AMR overlay) will not work in the
# general case, where all three arrays should correspond in order.
# (22-jun-20; oe)
if self.properties and self.anchorings:
try:
i = self.properties.index(name);
self.anchorings[i] = value;
except ValueError:
self.properties.append(name);
self.anchorings.append(value);
else:
self.properties = [name];
self.anchorings = [value];
def add_anchor(self, anchor):
if anchor is not None:
if self.anchors is None: self.anchors = [anchor];
elif anchor not in self.anchors: self.anchors.append(anchor);
def is_root(self):
return len(self.incoming_edges) == 0
def is_leaf(self):
return len(self.outgoing_edges) == 0
def is_singleton(self):
return self.is_root() and self.is_leaf() and not self.is_top
def normalize(self, actions, input = None, trace = 0):
def union(anchors):
characters = set();
for anchor in anchors:
if "from" in anchor and "to" in anchor:
for i in range(anchor["from"], anchor["to"]):
characters.add(i);
result = [];
last = start = None;
for i in sorted(characters):
if start is None: start = i;
if last is None:
last = i;
continue;
elif i == last + 1 \
or all(c in score.core.SPACE for c in input[last:i]):
last = i;
continue;
else:
result.append({"from": start, "to": last + 1});
last = start = i;
if len(characters) > 0:
result.append({"from": start, "to": i + 1});
if anchors != result:
old = [anchor for anchor in anchors if anchor not in result];
new = [anchor for anchor in result if anchor not in anchors];
print("{} ==> {} [{}]".format(old, new, input),
file = sys.stderr);
return result;
def trim(anchor, input):
if "from" in anchor and "to" in anchor:
i = max(anchor["from"], 0);
j = min(anchor["to"], len(input));
while i < j and input[i] in score.core.PUNCTUATION: i += 1;
while j > i and input[j - 1] in score.core.PUNCTUATION: j -= 1;
if trace and (i != anchor["from"] or j != anchor["to"]):
print("{} ({}) --> <{}:{}> ({})"
"".format(anchor,
input[anchor["from"]:anchor["to"]],
i, j, input[i:j]),
file = sys.stderr);
anchor["from"] = i;
anchor["to"] = j;
if self.anchors is not None and "anchors" in actions:
self.anchors = union(self.anchors);
if self.anchors is not None and len(self.anchors) > 0 and input:
for anchor in self.anchors: trim(anchor, input);
elif isinstance(self.anchors, list) and len(self.anchors) == 0:
self.anchors = None;
if "case" in actions:
if self.label is not None:
self.label = str(self.label).lower();
if self.properties and self.values:
for i in range(len(self.properties)):
self.properties[i] = str(self.properties[i]).lower();
self.values[i] = str(self.values[i]).lower();
def compare(self, node):
#
# keep track of node-local pieces of information that either occur in
# both nodes (i.e. match), or only in the first or second of them. in
# guiding the MCES search, we (apparently) use the net gain of matching
# pieces /minus/ those not matching on either side. that does not lead
# to monotonicity, in the sense of cumulative scores moving either up
# or down as more node correspondences are fixed, but for guiding the
# MCES search monotonicity fortunately is not a requirement either.
#
count1 = both = count2 = 0;
if node is None:
if self.is_top:
count1 += 1;
if self.label is not None:
count1 += 1;
if self.properties is not None:
count1 += len(self.properties);
return both - count1 - count2, count1, both, count2;
if self.is_top:
if node.is_top: both += 1;
else: count1 += 1;
else:
if node.is_top: count2 += 1;
else: both += 1;
if self.label is not None:
if self.label == node.label:
both += 1;
else:
count1 += 1;
if node.label is not None: count2 += 1;
if self.properties is not None:
if node.properties is None:
count1 += len(self.properties);
else:
properties1 = {(property, self.values[i])
for i, property in enumerate(self.properties)};
properties2 = {(property, node.values[i])
for i, property in enumerate(node.properties)};
n = len(properties1 & properties2);
count1 += len(properties1) - n;
both += n;
count2 += len(properties2) - n;
elif node.properties is not None:
count2 += len(node.properties);
return both - count1 - count2, count1, both, count2;
def encode(self):
json = {"id": self.id};
if self.label:
json["label"] = self.label;
if self.properties and self.values or self.anchorings:
json["properties"] = self.properties;
if self.values:
json["values"] = self.values;
if self.anchorings:
json["anchorings"] = self.anchorings;
if self.anchors:
json["anchors"] = self.anchors;
return json;
@staticmethod
def decode(json):
id = json["id"]
label = json.get("label", None)
properties = json.get("properties", None)
values = json.get("values", None)
anchorings = json.get("anchorings", None)
anchors = json.get("anchors", None)
return Node(id=id, label=label, properties=properties, values=values, anchors=anchors, anchorings=anchorings)
def dot(self, stream, input = None, ids = False, strings = False,
errors = None, overlay = False):
shapes = ["square", "oval", "diamond", "triangle"];
if errors is not None and "correspondences" in errors:
correspondences = {g: s for g, s in errors["correspondences"]};
else:
correspondences = None;
missing = [None, [], [], None];
surplus = [None, [], [], None];
if errors is not None:
if "labels" in errors and "missing" in errors["labels"]:
for id, label in errors["labels"]["missing"]:
if id == self.id: missing[0] = label;
if "properties" in errors and "missing" in errors["properties"]:
for id, property, value in errors["properties"]["missing"]:
if id == self.id:
missing[1].append(property); missing[2].append(value);
if "anchors" in errors and "missing" in errors["anchors"]:
for id, anchor in errors["anchors"]["missing"]:
if id == self.id: missing[3] = anchor;
if correspondences is not None and self.id in correspondences:
key = correspondences[self.id];
if "labels" in errors and "surplus" in errors["labels"]:
for id, label in errors["labels"]["surplus"]:
if id == key: surplus[0] = label;
if "properties" in errors and "surplus" in errors["properties"]:
for id, property, value in errors["properties"]["surplus"]:
if id == key:
surplus[1].append(property); surplus[2].append(value);
if "anchors" in errors and "surplus" in errors["anchors"]:
for id, anchor in errors["anchors"]["surplus"]:
if id == key: surplus[3] = anchor;
if self.label \
or ids and not overlay \
or self.properties and self.values \
or self.anchors \
or missing[0] is not None or len(missing[1]) > 0 \
or missing[3] is not None \
or surplus[0] is not None or len(surplus[1]) > 0 \
or surplus[3] is not None:
if self.type in {0, 1, 2, 3}:
shape = "shape={}, ".format(shapes[self.type]);
else:
shape = "";
color = "color=blue, " if overlay else "";
print(" {} [ {}{}label=<<table align=\"center\" border=\"0\" cellspacing=\"0\">"
"".format(self.id, shape, color), end = "", file = stream);
if ids and not overlay:
print("<tr><td colspan=\"2\">#{}</td></tr>"
"".format(self.id), end = "", file = stream);
if self.label:
if missing[0]: font = "<font color=\"red\">";
elif overlay: font = "<font color=\"blue\">";
else: font = "<font>";
print("<tr><td colspan=\"2\">{}{}</font></td></tr>"
"".format(font, html.escape(self.label, False)),
end = "", file = stream);
if surplus[0]:
font = "<font color=\"blue\">";
print("<tr><td colspan=\"2\">{}{}</font></td></tr>"
"".format(font, html.escape(surplus[0], False)),
end = "", file = stream);
def __anchors__(anchors, color):
print("<tr><td colspan=\"2\"><font color=\"{}\">{{"
"".format(color), end = "", file = stream);
for index in anchors:
print("{}{}".format(" " if index != anchors[0] else "", index),
end = "", file = stream);
print("}</font></td></tr>", end = "", file = stream);
if self.anchors is not None:
if overlay:
__anchors__(self.anchors, "blue");
else:
print("<tr><td colspan=\"2\">", end = "", file = stream);
for anchor in self.anchors:
if strings and input:
print("{}<font face=\"Courier\">{}</font>"
"".format(", " if anchor != self.anchors[0] else "",
html.escape(input[anchor["from"]:anchor["to"]])),
end = "", file = stream);
else:
print("{}〈{}:{}〉"
"".format(" " if anchor != self.anchors[0] else "",
anchor["from"], anchor["to"]),
end = "", file = stream);
print("</td></tr>", end = "", file = stream);
if missing[3]: __anchors__(missing[3], "red");
if surplus[3]: __anchors__(surplus[3], "blue");
def __properties__(names, values, color):
font = "<font color=\"{}\">".format(color);
for name, value in zip(names, values):
print("<tr><td sides=\"l\" border=\"1\" align=\"left\">{}{}</font>"
"</td><td sides=\"r\" border=\"1\" align=\"left\">{}{}</font></td></tr>"
"".format(font, html.escape(name, False),
font, html.escape(value), False),
end = "", file = stream);
if self.properties and self.values:
if not overlay:
for name, value in zip(self.properties, self.values):
i = None;
try:
i = missing[1].index(name);
except:
pass;
if i is None or missing[2][i] != value:
__properties__([name], [value], "black");
else:
__properties__(self.properties, self.values, "blue");
if len(missing[1]) > 0: __properties__(missing[1], missing[2], "red");
if len(surplus[1]) > 0: __properties__(surplus[1], surplus[2], "blue");
print("</table>> ];", file = stream);
elif overlay is None or self.id < 0:
shape = "{}, label=\" \"".format(shapes[0]) if self.type == 0 else "point";
print(" {} [ shape={}, width=0.2 ];"
"".format(self.id, shape), file = stream);
def __key(self):
return self.id
def __eq__(self, other):
return self.__key() == other.__key()
def __lt__(self, other):
return self.__key() < other.__key()
def __hash__(self):
return hash(self.__key())
class Edge(object):
def __init__(self, id, src, tgt, lab, normal = None,
attributes = None, values = None, anchors = None):
self.id = id;
self.src = src;
self.tgt = tgt;
self.lab = lab;
self.normal = normal;
self.attributes = attributes;
self.values = values;
self.anchors = anchors;
def is_loop(self):
return self.src == self.tgt
def min(self):
return min(self.src, self.tgt)
def max(self):
return max(self.src, self.tgt)
def endpoints(self):
return self.min(), self.max()
def length(self):
return self.max() - self.min()
def normalize(self, actions, trace = 0):
if "edges" in actions:
if self.normal is None \
and self.lab is not None:
label = self.lab;
if label == "mod":
self.normal = "domain";
elif label.endswith("-of-of") \
or label.endswith("-of") \
and label not in {"consist-of" "subset-of"} \
and not label.startswith("prep-"):
self.normal = label[:-3];
if self.normal:
target = self.src;
self.src = self.tgt;
self.tgt = target;
self.lab = self.normal;
self.normal = None;
if "case" in actions:
if self.lab is not None:
self.lab = str(self.lab).lower();
if self.normal is not None:
self.normal = str(self.normal).lower();
if self.attributes and self.values:
for i in range(len(self.attributes)):
self.attributes[i] = str(self.attributes[i]).lower();
self.values[i] = str(self.values[i]).lower();
if "attributes" in actions and self.attributes and self.values:
#
# drop (attribute, value) pairs whose value is the default value
#
attribute_value_pairs = [
(attribute, value) for attribute, value
in zip(self.attributes, self.values)
if attribute not in ATTRIBUTE_DEFAULTS
or ATTRIBUTE_DEFAULTS[attribute] != value]
self.attributes, self.values \
= tuple(map(list, zip(*attribute_value_pairs))) or ([], [])
def encode(self):
json = {"id": self.id};
if self.src is not None: json["source"] = self.src;
if self.tgt is not None: json["target"] = self.tgt;
if self.lab: json["label"] = self.lab;
if self.normal: json["normal"] = self.normal;
if self.attributes and self.values:
json["attributes"] = self.attributes;
json["values"] = self.values;
if self.anchors: json["anchors"] = self.anchors;
return json;
@staticmethod
def decode(json):
id = json.get("id", None);
src = json.get("source", None);
tgt = json.get("target", None);
lab = json.get("label", None);
if lab == "": lab = None;
normal = json.get("normal", None)
attributes = json.get("attributes", None)
if attributes is None:
attributes = json.get("properties", None)
if attributes is not None:
print("Edge.decode(): "
"interpreting deprecated ‘properties’ on edge object.",
file = sys.stderr);
values = json.get("values", None)
anchors = json.get("anchors", None)
return Edge(id, src, tgt, lab, normal, attributes, values, anchors)
def dot(self, stream, input = None, strings = False,
errors = None, overlay = False):
def __missing__():
if errors is not None and "edges" in errors \
and "missing" in errors["edges"]:
for source, target, label in errors["edges"]["missing"]:
if source == self.src and target == self.tgt and label == self.lab:
return True;
return False;
if self.attributes and self.values:
style = ", style=dashed";
label = "<<table align=\"center\" border=\"0\" cellspacing=\"0\">";
if self.lab: label += "<tr><td colspan=\"1\">{}</td></tr>".format(self.lab);
#
# _fix_me_
# currently assuming that all values are boolean where presence of
# the attribute means True. (oe; 21-apr-20)
#
if self.attributes and self.values:
for attribute, _ in zip(self.attributes, self.values):
label += "<tr><td>{}</td></tr>".format(attribute);
label += "</table>>";
else:
label = self.lab;
if label and self.normal:
if label[:-3] == self.normal:
label = "(" + self.normal + ")-of";
else:
label = label + " (" + self.normal + ")";
if label: label = "\"{}\"".format(label);
style = "";
if overlay:
color = ", color=blue, fontcolor=blue";
elif __missing__():
color = ", color=red, fontcolor=red";
else:
color = "";
print(" {} -> {} [ label={}{}{} ];"
"".format(self.src, self.tgt, label if label else "\"\"",
style, color),
file = stream);
def __key(self):
return self.tgt, self.src, self.lab
def __eq__(self, other):
return self.__key() == other.__key()
def __lt__(self, other):
return self.__key() < other.__key()
def __hash__(self):
return hash(self.__key())
class Graph(object):
def __init__(self, id, flavor = None, framework = None):
self.id = id;
self.time = datetime.utcnow();
self._language = None;
self._provenance = None;
self._source = None;
self._targets = None;
self.input = None;
self.nodes = [];
self.edges = set();
self.flavor = FLAVORS.get(framework) if flavor is None else flavor;
self.framework = framework;
def language(self, value = None):
if value is not None: self._language = value;
return self._language;
def provenance(self, value = None):
if value is not None: self._provenance = value;
return self._provenance;
def source(self, value = None):
if value is not None: self._source = value;
return self._source;
def targets(self, value = None):
if value is not None: self._targets = value;
return self._targets;
def size(self):
return len(self.nodes);
def inject(self, information):
if isinstance(information, str): information = eval(information);
for key, value in information.items():
if key == "id": self.id = value;
elif key == "time": self.item = value;
elif key == "language": self._language = value;
elif key == "provenance": self._provenance = value;
elif key == "source": self._source = value;
elif key == "targets": self._targets = value;
elif key == "input": self.input = value;
elif key == "flavor": self.flavor = value;
elif key == "framework": self.framework = value;
else:
print("Graph.inject(): ignoring invalid key ‘{}’"
"".format(key), file = sys.stderr);
def add_node(self, id = None, label = None,
properties = None, values = None,
anchors = None, top = False, type = 1, anchorings = None):
node = Node(id if id is not None else len(self.nodes),
label = label, properties = properties, values = values,
anchors = anchors, top = top, type = type,
anchorings = anchorings);
self.nodes.append(node)
return node
def find_node(self, id):
for node in self.nodes:
if node.id == id: return node;
def add_edge(self, src, tgt, lab, normal = None,
attributes = None, values = None, anchors = None):
self.store_edge(Edge(id=len(self.edges), src=src, tgt=tgt, lab=lab, normal=normal,
attributes=attributes, values=values, anchors=anchors));
def store_edge(self, edge, robust = False):
self.edges.add(edge)
source = self.find_node(edge.src);
if source is None and not robust:
raise ValueError("Graph.add_edge(): graph #{}: "
"invalid source node {}."
"".format(self.id, self.src))
if source: source.outgoing_edges.add(edge)
target = self.find_node(edge.tgt);
if target is None and not robust:
raise ValueError("Graph.add_edge(): graph #{}: "
"invalid target node {}."
"".format(self.id, self.tgt))
if target: target.incoming_edges.add(edge)
return edge
def add_input(self, text, id = None, quiet = False):
if not id: id = self.id;
if isinstance(text, str):
self.input = text;
elif isinstance(text, Path):
file = text / (str(id) + ".txt");
if not file.exists() and not quiet:
print("add_input(): no text for {}.".format(file),
file = sys.stderr);
else:
with file.open() as stream:
input = stream.readline();
if input.endswith("\n"): input = input[:len(input) - 1];
self.input = input;
else:
input = text.get(id);
if input:
self.input = input;
elif not quiet:
print("add_input(): no text for key {}.".format(id),
file = sys.stderr);
def anchor(self):
n = len(self.input);
i = 0;
def skip():
nonlocal i;
while i < n and self.input[i] in {" ", "\t"}:
i += 1;
def scan(candidates):
for candidate in candidates:
if self.input.startswith(candidate, i):
return len(candidate);
skip();
for node in self.nodes:
for j in range(len(node.anchors) if node.anchors else 0):
if isinstance(node.anchors[j], str):
form = node.anchors[j];
m = None;
if self.input.startswith(form, i):
m = len(form);
else:
for old, new in {("‘", "`"), ("’", "'"), ("`", "'"),
("“", "\""), ("”", "\"")}:
form = form.replace(old, new);
if self.input.startswith(form, i):
m = len(form);
break;
#
# _fix_me_
# the block below looks weird: it would seem to accept any
# of the punctuation marks given to scan(), irrespective
# of the current .form. value? (oe; 27-apr-20)
#
if not m:
m = scan({"“", "\"", "``"}) or scan({"‘", "`"}) \
or scan({"”", "\"", "''"}) or scan({"’", "'"}) \
or scan({"—", "—", "---", "--"}) \
or scan({"…", "...", ". . ."});
if m:
node.anchors[j] = {"from": i, "to": i + m};
i += m;
skip();
else:
raise Exception("failed to anchor |{}| in |{}| ({})"
"".format(form, self.input, i));
def normalize(self, actions, trace = 0):
for node in self.nodes:
node.normalize(actions, self.input, trace);
for edge in self.edges:
edge.normalize(actions, trace);
#
# recompute cached edge relations, to reflect the new state of affairs
#
if "edges" in actions:
for node in self.nodes:
node.outgoing_edges.clear();
node.incoming_edges.clear();
for edge in self.edges:
self.find_node(edge.src).outgoing_edges.add(edge);
self.find_node(edge.tgt).incoming_edges.add(edge);
def prettify(self, trace = 0):
if self.framework == "drg":
boxes = {"IMP", "DIS", "DUP", "NOT", "POS", "NEC",
"ALTERNATION", "ATTRIBUTION", "BACKGROUND",
"COMMENTARY", "CONDITION", "CONTINUATION", "CONTRAST",
"CONSEQUENCE", "ELABORATION", "EXPLANATION", "INSTANCE",
"NARRATION", "NEGATION", "NECESSITY",
"POSSIBILITY", "PARALLEL", "PRECONDITION",
"RESULT", "TOPIC", "PRESUPPOSITION"};
for node in self.nodes:
if node.is_top or node.is_root():
node.type = 0;
#
# _fix_me_
# but what about more deeply nested boxes? (24-aug-20; oe)
#
for edge in node.outgoing_edges:
if edge.lab in boxes:
self.find_node(edge.tgt).type = 0;
elif len(node.incoming_edges) == len(node.outgoing_edges) == 1:
if next(iter(node.incoming_edges)).lab is None \
and next(iter(node.outgoing_edges)).lab is None:
node.type = 2;
def score(self, graph, correspondences, errors = None):
#
# accommodate the various conventions for node correspondence matrices;
# anyway, entries are indices into the .nodes. list, not identifiers.
# _fix_me_
# double-check for correspondences from SMATCH. (oe; 19-apr-20)
#
if isinstance(correspondences, list) and len(correspondences) > 0:
if isinstance(correspondences[0], tuple):
correspondences = {i: j if j is not None else -1
for i, j in correspondences};
elif isinstance(correspondences[0], int):
correspondences = {i: j if j is not None else -1
for i, j in enumerate(correspondences)};
#
# all tuples use node identifiers from the gold graph, where there is
# a correspondence; otherwise we (appear to) synthesize new unique
# identifiers for remaining nodes from both graphs.
#
identities1 = dict();
identities2 = dict();
for i, pair in enumerate(correspondences.items()):
identities1[self.nodes[pair[0]].id] = i;
if pair[1] >= 0:
identities2[graph.nodes[pair[1]].id] = i;
i = len(correspondences);
for node in self.nodes:
if node.id not in identities1:
identities1[node.id] = i;
i += 1;
for node in graph.nodes:
if node.id not in identities2:
identities2[node.id] = i;
i += 1;
#
# map 'corresponding' identifiers back to the original graphs
#
def native(id, identities):
for key, value in identities.items():
if id == value: return key;
def tuples(graph, identities):
#
# .identities. is a hash table mapping node identifiers into the
# 'corresponding' identifier space, such that paired nodes (and
# only these) share the same identifier.
#
def identify(id):
return identities[id] if identities is not None else id;
tops = set();
labels = set();
properties = set();
anchors = set();
edges = set();
attributes = set();
for node in graph.nodes:
identity = identify(node.id);
if node.is_top: tops.add(identity);
if node.label is not None: labels.add((identity, node.label));
if node.properties is not None:
for property, value in zip(node.properties, node.values):
properties.add((identity, property, value.lower()));
if node.anchors is not None:
anchor = score.core.anchor(node);
if graph.input:
anchor = score.core.explode(graph.input, anchor);
else:
anchor = tuple(anchor);
anchors.add((identity, anchor));
for edge in graph.edges:
identity \
= (identify(edge.src), identify(edge.tgt), edge.lab);
edges.add(identity);
if edge.attributes and edge.values:
for attribute, value in zip(edge.attributes, edge.values):
attributes.add(tuple(list(identity) + [attribute, value]));
return tops, labels, properties, anchors, edges, attributes;
def count(gold, system, key):
if errors is not None:
missing = gold - system;
surplus = system - gold;
if len(missing) > 0 or len(surplus) > 0 and key not in errors:
errors[key] = dict();
if key == "tops":
if missing:
errors[key]["missing"] \
= [native(id, identities1) for id in missing];
if surplus:
errors[key]["surplus"] \
= [native(id, identities2) for id in surplus];
elif key == "labels":
if missing:
errors[key]["missing"] \
= [(native(id, identities1), label)
for id, label in missing];
if surplus:
errors[key]["surplus"] \
= [(native(id, identities2), label)
for id, label in surplus];
elif key == "properties":
if missing:
errors[key]["missing"] \
= [(native(id, identities1), property, value)
for id, property,value in missing];
if surplus:
errors[key]["surplus"] \
= [(native(id, identities2), property, value)
for id, property, value in surplus];
elif key == "anchors":
if missing:
errors[key]["missing"] \
= [(native(id, identities1), list(sorted(anchor)))
for id, anchor in missing];
if surplus:
errors[key]["surplus"] \
= [(native(id, identities2), list(sorted(anchor)))
for id, anchor in surplus];
elif key == "edges":
if missing:
errors[key]["missing"] \
= [(native(source, identities1),
native(target, identities1), label)
for source, target, label in missing];
if surplus:
errors[key]["surplus"] \
= [(native(source, identities2),
native(target, identities2), label)
for source, target, label in surplus];
elif key == "attributes":
if missing:
errors[key]["missing"] \
= [(native(source, identities1),
native(target, identities1), label,
attribute, value)
for source, target, label, attribute, value
in missing];
if surplus:
errors[key]["surplus"] \
= [(native(source, identities2),
native(target, identities2), label,
attribute, value)
for source, target, label, attribute, value
in surplus];
return {"g": len(gold), "s": len(system), "c": len(gold & system)};
if correspondences is None or len(correspondences) == 0:
return count(set(), set()), count(set(), set()), \
count(set(), set()), count(set(), set()), \
count(set(), set()), count(set(), set());
gtops, glabels, gproperties, ganchors, gedges, gattributes \
= tuples(self, identities1);
stops, slabels, sproperties, sanchors, sedges, sattributes \
= tuples(graph, identities2);
if errors is not None:
errors[self.framework][self.id] = errors \
= {"correspondences": [(self.nodes[g].id, graph.nodes[s].id)
for g, s in correspondences.items()
if s >= 0]}
return count(gtops, stops, "tops"), \
count(glabels, slabels, "labels"), \
count(gproperties, sproperties, "properties"), \
count(ganchors, sanchors, "anchors"), \
count(gedges, sedges, "edges"), \
count(gattributes, sattributes, "attributes");
def encode(self, version = 1.1):
json = {"id": self.id};
if self.flavor is not None:
json["flavor"] = self.flavor;
if self.framework:
json["framework"] = self.framework;
json["version"] = version;
if self.time is not None:
json["time"] = self.time.strftime("%Y-%m-%d");
else:
json["time"] = datetime.now().strftime("%Y-%m-%d");
if self._language is not None: json["language"] = self._language;
if self._source is not None: json["source"] = self._source;
if self._provenance is not None: json["provenance"] = self._provenance;
if self._targets is not None: json["targets"] = self._targets;
if self.input:
json["input"] = self.input;
if self.nodes:
tops = [node.id for node in self.nodes if node.is_top];
if len(tops):
json["tops"] = tops;
json["nodes"] = [node.encode() for node in self.nodes];
if self.edges:
json["edges"] = [edge.encode() for edge in
sorted(self.edges, key = operator.attrgetter("id"))];
return json;
@staticmethod
def decode(json, robust = False):
graph = Graph(json["id"], json.get("flavor"), json.get("framework"))
try:
graph.time = datetime.strptime(json["time"], "%Y-%m-%d")
except:
graph.time = datetime.strptime(json["time"], "%Y-%m-%d (%H:%M)")
graph.input = json.get("input")
graph.language(json.get("language"))
graph.source(json.get("source"))
graph.provenance(json.get("provenance"))
graph.targets(json.get("targets"))
nodes = json.get("nodes")
if nodes is not None:
for j in nodes:
node = Node.decode(j)
graph.add_node(node.id, node.label, node.properties,
node.values, node.anchors, top = False, anchorings=node.anchorings)
edges = json.get("edges")
if edges is not None:
for j in edges:
edge = Edge.decode(j);
if edge.id is None: edge.id = len(graph.edges);
graph.store_edge(edge, robust = robust);
tops = json.get("tops")
if tops is not None:
for i in tops:
node = graph.find_node(i)
if node is not None:
node.is_top = True
else:
raise ValueError("Graph.decode(): graph #{}: "
"invalid top node {}."
"".format(graph.id, i))
return graph
def copy(self):
return Graph.decode(self.encode())
def dot(self, stream, ids = False, strings = False,
errors = None, overlay = False):
if not overlay:
print("digraph \"{}\" {{\n top [ style=invis ];"
"".format(self.id),
file = stream);
for node in self.nodes:
if node.is_top:
if overlay:
color = " [ color=blue ]";
elif errors is not None and "tops" in errors \
and "missing" in errors["tops"] and node.id in errors["tops"]["missing"]:
color = " [ color=red ]";
else:
color = "";
print(" top -> {}{};".format(node.id, color), file = stream);
n = -1;
for node in self.nodes:
node.dot(stream, self.input, ids, strings, errors, overlay);
for edge in self.edges:
if node.id == edge.src:
edge.dot(stream, self.input, strings, errors, overlay);
if errors is not None:
surplus = Graph(self.id, flavor = self.flavor, framework = self.framework);
surplus.add_input(self.input);
mapping = dict();
correspondences = {s: g for g, s in errors["correspondences"]};
if "labels" in errors and "surplus" in errors["labels"]:
for id, label in errors["labels"]["surplus"]:
if id not in correspondences:
mapping[id] = surplus.add_node(id = n, label = label);
n -= 1;
if "properties" in errors and "surplus" in errors["properties"]:
for id, property, value in errors["properties"]["surplus"]:
if id not in correspondences:
if id in mapping:
mapping[id].set_property(property, value);
else:
mapping[id] = surplus.add_node(id = n,
properties = [property],
values = [value]);
n -= 1;
if "anchors" in errors and "surplus" in errors["anchors"]:
for id, anchor in errors["anchors"]["surplus"]:
if id not in correspondences:
if id in mapping:
mapping[id].anchors = anchor;
else:
mapping[id] = surplus.add_node(id = n, anchors = anchor);
n -= 1;
if "tops" in errors and "surplus" in errors["tops"]:
for id in errors["tops"]["surplus"]:
if id in correspondences:
print(" top -> {} [ color=blue ];"
"".format(correspondences[id]), file = stream);
elif id not in mapping:
mapping[id] = surplus.add_node(id = n, top = True);
n -= 1;
else:
mapping[id].is_root = True;
if "edges" in errors and "surplus" in errors["edges"]:
for source, target, label in errors["edges"]["surplus"]:
if source not in mapping:
try:
mapping[source] = surplus.add_node(correspondences[source]);
except KeyError:
mapping[source] = surplus.add_node(n);
n -= 1;
if target not in mapping:
try:
mapping[target] = surplus.add_node(correspondences[target]);
except KeyError:
mapping[target] = surplus.add_node(n);
n -= 1;
surplus.add_edge(mapping[source].id, mapping[target].id, label);
surplus.dot(stream, ids = ids, strings = strings, errors = None, overlay = True);
if not overlay: print("}", file = stream);
def tikz(self, stream):
if self.flavor != 0: # bi-lexical: use tikz-dependency
raise ValueError("TikZ visualization is currently only for flavor-0 graphs.")
graph = self._full_sentence_recovery() # a copy of self with nodes covering all tokens
print(r"\documentclass{article}", file=stream)
print(r"\usepackage[T1]{fontenc}", file=stream)
print(r"\usepackage[utf8]{inputenc}", file=stream)
print(r"\usepackage{tikz-dependency}", file=stream)
print(r"\begin{document}", file=stream)
print(r"\begin{dependency}", file=stream)
print(r"\begin{deptext}", file=stream)
print(r"% id = " + str(graph.id), file=stream)
if graph.input is not None:
print(r"% input = " + str(graph.input), file=stream)
sorted_nodes = sorted((node.id, node) for node in graph.nodes)
id2i = {id: i for i, (id, _) in enumerate(sorted_nodes, start=1)}
print(r" \& ".join(" ".join(graph.input[anchor["from"]:anchor["to"]] for anchor in node.anchors or ())
or node.label for _, node in sorted_nodes) + r" \\", file=stream)
print(r"\end{deptext}", file=stream)
for id, node in sorted_nodes:
if node.is_top:
print(r"\deproot{" + str(id2i[id]) + r"}{TOP}", file=stream)
for edge in graph.edges:
if node.id == edge.tgt:
print(r"\depedge{" + str(id2i[edge.src]) + r"}{" + str(id2i[id]) + r"}{" + str(edge.lab) + r"}", file=stream)
print(r"\end{dependency}", file=stream)
print(r"\end{document}", file=stream)
def displacy(self, stream=None, format="svg", **kwargs):
"""
Use displacy to present dependency graph over sentence.
:param format: can be either "svg" or "html".
kwargs are passed to displacy.render method, see https://spacy.io/usage/visualizers
for possible options.
One can omit the stream argument if specifying `jupyter=True` - this will render the visualization directly
to the jupyter notebook.
"""
assert stream or kwargs.get("jupyter"), "Either `stream` is given or `jupyter=True` must hold."
assert format in ("svg", "html"), 'format can be either "svg" or "html"'
try:
from spacy import displacy
except ModuleNotFoundError as e:
print("You must install SpaCy in order to use the displacy visualization. \nTry running `pip install spacy`.")
raise e
if self.flavor != 0: # currently supporting only bi-lexical graphs
raise ValueError("displacy visualization is currently only for flavor-0 graphs.")
graph = self._full_sentence_recovery() # a copy of self with nodes covering all tokens
# prepare displacy_dep_input, composed of `words` list and `arcs` list
words = [{"text": n.label, "tag": ""} for n in graph.nodes]
def get_arc(edge: Edge):
src, tgt = edge.src, edge.tgt
direction = u'right' if src < tgt else u'left'
return {'dir': direction,
'start': min(src, tgt),
'end': max(src, tgt),
'label': edge.lab}
arcs = [get_arc(edge) for edge in graph.edges]
displacy_dep_input = {'words': words, 'arcs': arcs}
# render to stream as svg or html
kwargs["page"] = format=="html"
markdown = displacy.render(displacy_dep_input, style='dep', manual=True, **kwargs)
# write svg text to a file
if stream:
stream.write(markdown)
def _full_sentence_recovery(self):
"""
graph nodes may sometimes only include non-singleton nodes, for example when taking the graph from
a model prediction. For this reason, we need to use anchors and the input sentence in order to recover
the original tokenization (thus node-ids and their corresponding text spans).
Here, when necessary, we assume the original tokenization is encoded with spaces in self.input.
But we mainly look for missing character segments (i.e. spans that are not included in anchors)
and produce singleton nodes for them.
The function returns a new Graph, in which recovered nodes are included and thus nodes correspond to
input tokens.
"""
graph = self.copy() # don't change
length = len(graph.input)
def rm_all(lst, items_to_remove):
for item in items_to_remove:
if item in lst:
lst.remove(item)
return lst
def group_consecutive(lst):
# get list of integers, return list of lists, each the maximal consecutive (increasing) set from lst
if not lst:
return []
groups = []
cur_group=[lst[0]]
for i,item in enumerate(lst[1:]):
if item-1 == cur_group[-1]:
cur_group.append(item)
else:
groups.append(cur_group)
cur_group = [item]
groups.append(cur_group)
return groups
# iterate missing ids
node_ids = [n.id for n in graph.nodes]
id2node = {n.id : n for n in graph.nodes}
max_id = max(node_ids)
missing_ids = rm_all(list(range(max_id)), node_ids)
missing_id_groups = group_consecutive(missing_ids)
for id_group in missing_id_groups:
# id_group is a list of consecutive missing ids
if id_group[0]==0:
begin_char = 0
else:
prev_id = id_group[0]-1 # the id of the existing node preceding the missing-id group
prev_node = id2node[prev_id]
begin_char = prev_node.anchors[0]['to']
next_id = id_group[-1]+1
if next_id in id2node:
next_node = id2node[next_id]
end_char = next_node.anchors[0]['from']
else:
end_char = length
omitted_span = graph.input[begin_char:end_char]
# we need to create len(id_group) new nodes for the omitted span.
# Try to align singleton node (i.e. one id) to a token; if num of tokens in omitted_span
# don't match num of missing ids, generate all these nodes with the same anchors to the whole span
tokens = omitted_span.strip().split()
if len(tokens) == len(id_group):
for token, new_id in zip(tokens, id_group):
tok_begin_char = begin_char + omitted_span.find(token)
tok_end_char = tok_begin_char + len(token)
# add new node corresponding to omitted token
graph.add_node(new_id, label=token, anchors=[{"from":tok_begin_char, "to":tok_end_char}])
else:
# add new nodes, all corresponding to omitted span
for new_id in id_group:
graph.add_node(new_id, label=omitted_span, anchors=[{"from": begin_char, "to": end_char}])
# special treatment is required for missing tokens after the last existing node
# (if there are tokens left in self.input not covered by node anchors)
last_end_char_of_nodes = max([n.anchors[0]['to'] for n in graph.nodes])
if last_end_char_of_nodes < length:
# the meaning is that there is some span of the sentence not covered;
# we will add nodes according to num of tokens in this last span
omitted_span = graph.input[last_end_char_of_nodes:]
for i,token in enumerate(omitted_span.strip().split()):
new_id = max_id+1+i
tok_begin_char = last_end_char_of_nodes + omitted_span.find(token)
tok_end_char = tok_begin_char + len(token)
graph.add_node(new_id, label=token, anchors=[{"from":tok_begin_char, "to":tok_end_char}])
# as a finish, sort nodes in graph so that they will again be ordered by id (& realization location)
graph.nodes = list(sorted(graph.nodes))
return graph
|