File size: 5,718 Bytes
c45d283 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import collections
import sys
def make_clique(graph, nodes):
for v1 in nodes:
for v2 in nodes:
if v1 != v2:
graph[v1].add(v2)
def count_fillin(graph, nodes):
"""How many edges would be needed to make v a clique."""
count = 0
for v1 in nodes:
for v2 in nodes:
if v1 != v2 and v2 not in graph[v1]:
count += 1
return count/2
def is_clique(graph, vs):
for v1 in vs:
for v2 in vs:
if v1 != v2 and v2 not in graph[v1]:
return False
return True
def simplicial(graph, v):
return is_clique(graph, graph[v])
def almost_simplicial(graph, v):
for u in graph[v]:
if is_clique(graph, graph[v] - {u}):
return True
return False
def eliminate_node(graph, v):
make_clique(graph, graph[v])
delete_node(graph, v)
def delete_node(graph, v):
for u in graph[v]:
graph[u].remove(v)
del graph[v]
def contract_edge(graph, u, v):
"""Contract edge (u,v) by removing u"""
graph[v] = (graph[v] | graph[u]) - {u, v}
del graph[u]
for w in graph:
if u in graph[w]:
graph[w] = (graph[w] | {v}) - {u, w}
def copy_graph(graph):
return {u:set(graph[u]) for u in graph}
def upper_bound(graph):
"""Min-fill."""
graph = copy_graph(graph)
dmax = 0
order = []
while len(graph) > 0:
#d, u = min((len(graph[u]), u) for u in graph) # min-width
d, u = min((count_fillin(graph, graph[u]), u) for u in graph)
dmax = max(dmax, len(graph[u]))
eliminate_node(graph, u)
order.append(u)
return dmax, order
def lower_bound(graph):
"""Minor-min-width"""
graph = copy_graph(graph)
dmax = 0
while len(graph) > 0:
# pick node of minimum degree
d, u = min((len(graph[u]), u) for u in graph)
dmax = max(dmax, d)
# Gogate and Dechter: minor-min-width
nb = graph[u] - {u}
if len(nb) > 0:
_, v = min((len(graph[v] & nb), v) for v in nb)
contract_edge(graph, u, v)
else:
delete_node(graph, u)
return dmax
class Solution(object):
pass
def quickbb(graph):
"""Gogate and Dechter, A complete anytime algorithm for treewidth. UAI
2004. http://arxiv.org/pdf/1207.4109.pdf"""
"""Given a permutation of the nodes (called an elimination ordering),
for each node, remove the node and make its neighbors into a clique.
The maximum degree of the nodes at the time of their elimination is
the width of the tree decomposition corresponding to that ordering.
The treewidth of the graph is the minimum over all possible
permutations.
"""
best = Solution() # this gets around the lack of nonlocal in Python 2
best.count = 0
def bb(graph, order, f, g):
best.count += 1
if len(graph) < 2:
if f < best.ub:
assert f == g
best.ub = f
best.order = list(order) + list(graph)
else:
vs = []
for v in graph:
# very important pruning rule
if simplicial(graph, v) or almost_simplicial(graph, v) and len(graph[v]) <= lb:
vs = [v]
break
else:
vs.append(v)
for v in vs:
graph1 = copy_graph(graph)
eliminate_node(graph1, v)
order1 = order + [v]
# treewidth for current order so far
g1 = max(g, len(graph[v]))
# lower bound given where we are
f1 = max(g, lower_bound(graph1))
if f1 < best.ub:
bb(graph1, order1, f1, g1)
graph = { u : set(graph[u]) for u in graph }
order = []
best.ub, best.order = upper_bound(graph)
lb = lower_bound(graph)
if lb < best.ub:
bb(graph, order, lb, 0)
# Build the tree decomposition
tree = collections.defaultdict(set)
def build(order):
if len(order) < 2:
bag = frozenset(order)
tree[bag] = set()
return
v = order[0]
clique = graph[v]
eliminate_node(graph, v)
build(order[1:])
for tv in tree:
if clique.issubset(tv):
break
bag = frozenset(clique | {v})
tree[bag].add(tv)
tree[tv].add(bag)
build(best.order)
return tree
if True and __name__ == "__main__":
import fileinput, sys
import graph
s = []
for line in fileinput.input():
if line.lstrip().startswith('#'):
continue
s.append(line)
s = ''.join(s)
i = 0
while i < len(s):
try:
g, i1 = graph.scan_graph(s, start=i, return_end=True)
except:
sys.stderr.write("couldn't read: %s\n" % s[i:i1])
if g is None: break
i = i1
g = g.undirected_graph()
tree = quickbb(g)
print(max(len(tv)-1 for tv in tree))
#print tree
if False and __name__ == "__main__":
import fileinput, sys
g = collections.defaultdict(set)
for line in fileinput.input():
if line.rstrip() == "END":
break
u, v = line.split()
g[u].add(v)
g[v].add(u)
tree = quickbb(g)
root = list(tree)[0]
def visit(tu, indent, memo):
if tu in memo: return
memo.add(tu)
print(" "*indent, " ".join(tu))
for tv in tree[tu]:
visit(tv, indent+2, memo)
visit(root, 0, set())
print("bags:", len(tree))
print("width:", max(len(tv)-1 for tv in tree))
|