File size: 14,316 Bytes
c6ff4d1
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cac51512290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cac51512320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cac515123b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cac51512440>", "_build": "<function ActorCriticPolicy._build at 0x7cac515124d0>", "forward": "<function ActorCriticPolicy.forward at 0x7cac51512560>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cac515125f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cac51512680>", "_predict": "<function ActorCriticPolicy._predict at 0x7cac51512710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cac515127a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cac51512830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cac515128c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cac5151c540>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 200000, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690040882240772569, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANafhEDDFo08R/zyPsqOzb9GRnG+EA9fPe2Y+z7FXjc/vawJwDZ2M7ytMizAGaBbvLwTLz9CJ1s7dYkxQLI3tjy4H0O/33souz2sREAv2q08Tpe8P5npPDyUZibAYMCKvCsqhL/TgtW/+dEEwG6xdr/Wn4RAefSMPEf88j7Kjs2/RkZxvhAPXz3tmPs+xV43Pzktvb82djO8jslGwBmgW7zPy7w+QidbO0mdNUCyN7Y8jdodv997KLswtkZAL9qtPFPVrD+Z6Tw84BU1wGDAirwrKoS/04LVv/nRBMBusXa/1p+EQAAfjTxH/PI+yo7Nv0ZGcb4QD1897Zj7PsVeNz+aqva/NnYzvOxNJ8AZoFu8R+FYP0InWzvwMFZAsje2PJthBb/feyi7l/pPQC/arTwbvMw/mek8PEaQMsBgwIq8KyqEv9OC1b/50QTAbrF2v8gUgEBZDpk8LvzyPjVKzr+2Qaq+VydZv2PYwL5EjDM/cvjWv/Bflj9FDjTAvpxbvN4OAT4D2DG/WAk4QLI3tjxFk8y+IpcSP/kMIkAwyD3A0aebP9hahb8y4xPA6dMHQCsqhL/TgtW/+dEEwG6xdr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAvybA2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAuWDUPAAAAACJ0tu/AAAAACcqAD4AAAAADeIAQAAAAABeW+88AAAAAE/42T8AAAAAGcfZvQAAAADb1+e/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALpGBtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgO6Tbz0AAAAAYHfZvwAAAADkg7k7AAAAAKIk3z8AAAAAEE+svQAAAABdTgFAAAAAACIQx70AAAAA8avnvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG4ZwrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA3I2G9AAAAAMJv478AAAAAHE/PvQAAAAAXUv0/AAAAAMsvCr4AAAAAHjn9PwAAAABNfJw9AAAAAICh778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACID2o2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANtMLvQAAAACo1Pe/AAAAAGUc4L0AAAAArN/tPwAAAABjNeY9AAAAAIqe3D8AAAAAXsMBvgAAAACyWfS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ93caCL/CKMAWyUTegDjAF0lEdArb2RuO0b+HV9lChoBkdAnVZksOG0u2gHTegDaAhHQK29ki48U211fZQoaAZHQJwjeMVDa5BoB03oA2gIR0CtvZKuKXOXdX2UKGgGR0CX0xyE+PilaAdN6ANoCEdArb2TM/yGz3V9lChoBkdAkNgJLytmtmgHTegDaAhHQK3KbcnE2pB1fZQoaAZHQIiy1MdtEXtoB03oA2gIR0Ctym5NoJzDdX2UKGgGR0CTw+hXr+o+aAdN6ANoCEdArcpuw3YL9nV9lChoBkdAn15uhbnoxGgHTegDaAhHQK3Kb0Qsf7t1fZQoaAZHQJkA3idat9xoB03oA2gIR0Ct2gWoegctdX2UKGgGR0CSRdELH+6zaAdN6ANoCEdArdoGHvc8DHV9lChoBkdAktGUjcEeQ2gHTegDaAhHQK3aBopx3mp1fZQoaAZHQIDQCKcd5ptoB03oA2gIR0Ct2gcBuGbkdX2UKGgGR0CaMkkka/ATaAdN6ANoCEdArebDZg5R0nV9lChoBkdAlSVfA44p+mgHTegDaAhHQK3mw8rZrYZ1fZQoaAZHQJJNGFsYVItoB03oA2gIR0Ct5sRm03OwdX2UKGgGR0CQ+j752yLRaAdN6ANoCEdArebE9nscAHV9lChoBkdAjPkYywfQr2gHTegDaAhHQK32WgEEC/51fZQoaAZHQJ3/LkELYwtoB03oA2gIR0Ct9lp8v24/dX2UKGgGR0CXcDb961LKaAdN6ANoCEdArfZbBoEjgXV9lChoBkdAkuKcAeaKDWgHTegDaAhHQK32W5LAYYR1fZQoaAZHQJqsAAQxvehoB03oA2gIR0CuAzetr9EUdX2UKGgGR0CduyzHS4OMaAdN6ANoCEdArgM4IjW07nV9lChoBkdAn/jNRaX8fmgHTegDaAhHQK4DOKZUkv91fZQoaAZHQJt7E2VE/jdoB03oA2gIR0CuAzlHSWqtdX2UKGgGR0CSozkuHvc8aAdN6ANoCEdArhLoH9m6G3V9lChoBkdAntV9wFTvRmgHTegDaAhHQK4S6I/qxC91fZQoaAZHQJ4FeEkB0ZFoB03oA2gIR0CuEukTQE6ldX2UKGgGR0CdPwKJ2t+1aAdN6ANoCEdArhLpnzxwynV9lChoBkdAoNl6rPt2LmgHTegDaAhHQK4fyNy5qdp1fZQoaAZHQJ0TqdkJ8fFoB03oA2gIR0CuH8nB1s+FdX2UKGgGR0CdWItKIznBaAdN6ANoCEdArh/K8pTdcnV9lChoBkdAoUGpgAp8W2gHTegDaAhHQK4fzEx7AtZ1fZQoaAZHQKBOH5pJwsJoB03oA2gIR0CuL5UA93bFdX2UKGgGR0CcvvPznRsuaAdN6ANoCEdAri+VaSs8xXV9lChoBkdAnwES1NQCS2gHTegDaAhHQK4vld9lVcV1fZQoaAZHQJ3mpovi97FoB03oA2gIR0CuL5ZTho/SdX2UKGgGR0ChQH9tdiUgaAdN6ANoCEdArjx7jNpudnV9lChoBkdAnW2klZ5iVmgHTegDaAhHQK48fAN5MUR1fZQoaAZHQKEtommce8xoB03oA2gIR0CuPHyGrS3LdX2UKGgGR0Cgu5z3qRlpaAdN6ANoCEdArjx9FYuCgHV9lChoBkdAoDru5Yoy9GgHTegDaAhHQK5MWyprDZV1fZQoaAZHQJ4EIKhL5ARoB03oA2gIR0CuTFunEVFhdX2UKGgGR0CgKDDDbah6aAdN6ANoCEdArkxcOEug6HV9lChoBkdAoCf6XWvr4WgHTegDaAhHQK5MXMj/uLJ1fZQoaAZHQJvPJA8jiXJoB03oA2gIR0CuWX5DJEH/dX2UKGgGR0CbfNPY4ACGaAdN6ANoCEdArll+ugYgq3V9lChoBkdAmLVxTfixV2gHTegDaAhHQK5Zfzundft1fZQoaAZHQJqkEFotcwBoB03oA2gIR0CuWX/M4cWCdX2UKGgGR0Cduchy8zyjaAdN6ANoCEdArmky31BdEHV9lChoBkdAjYfM0pEx7GgHTegDaAhHQK5pM0m+j/N1fZQoaAZHQJExQ0O3DvVoB03oA2gIR0CuaTPEsJ6ZdX2UKGgGR0CFtpPSDyvtaAdN6ANoCEdArmk0UEgW8HV9lChoBkdAn3w6+evpyWgHTegDaAhHQK52NrY5DJF1fZQoaAZHQJ+QkVLzwttoB03oA2gIR0CudjeQuEmIdX2UKGgGR0CfQcvhIe5naAdN6ANoCEdArnY4mTkhinV9lChoBkdAn8yBVp9JBmgHTegDaAhHQK52OZtNzsB1fZQoaAZHQJF45I1+AmRoB03oA2gIR0CuiHzGgi/xdX2UKGgGR0CeGRTW5H3DaAdN6ANoCEdAroh9Qfp2U3V9lChoBkdAmh+GF8G9pWgHTegDaAhHQK6IfbFjurp1fZQoaAZHQJ2sABGQSzxoB03oA2gIR0CuiH4xL0z1dX2UKGgGR0CeqbGC7K7qaAdN6ANoCEdArpVCWmgrY3V9lChoBkdAoBgB/ustCmgHTegDaAhHQK6VQsFMZgp1fZQoaAZHQJ7cu6Ymb9ZoB03oA2gIR0CulUNPgvUSdX2UKGgGR0CgJzUnPVuraAdN6ANoCEdArpVD2WY4Q3V9lChoBkdAoL/Pkq+ajWgHTegDaAhHQK6k9YlIEr51fZQoaAZHQKBGawUQCjloB03oA2gIR0CupPX8O09hdX2UKGgGR0CZOQEmplz2aAdN6ANoCEdArqT2nGbTdHV9lChoBkdAoGvmk1uR92gHTegDaAhHQK6k90knkT91fZQoaAZHQKEgaLWI42loB03oA2gIR0CusbyGi5/cdX2UKGgGR0CYiFTVDrquaAdN6ANoCEdArrG9Je3QU3V9lChoBkdAmr17IPsiS2gHTegDaAhHQK6xvfek56t1fZQoaAZHQJRUJ5TqB3BoB03oA2gIR0Cusb6G5+YudX2UKGgGR0Cg5brNfPX1aAdN6ANoCEdArsGnv2GqP3V9lChoBkdAoCndTR6WxGgHTegDaAhHQK7BqDIRywR1fZQoaAZHQJaHHh1klNVoB03oA2gIR0Cuwai6g/TtdX2UKGgGR0CggffeLvTgaAdN6ANoCEdArsGpP/JeV3V9lChoBkdAf3CIPsiSq2gHTegDaAhHQK7OuwX668R1fZQoaAZHQJXEP5qM3qBoB03oA2gIR0CuzruB+WnkdX2UKGgGR0CDSrZtelbeaAdN6ANoCEdArs68E3bVSXV9lChoBkdAkBjAEMb3oWgHTegDaAhHQK7OvJV81Gd1fZQoaAZHQKAz8fU4JeFoB03oA2gIR0Cu3f1dHDrJdX2UKGgGR0CXOPhYvFm4aAdN6ANoCEdArt390DEFXHV9lChoBkdAmb762v0ROGgHTegDaAhHQK7d/mq5sj51fZQoaAZHQJ2fLSQYDT1oB03oA2gIR0Cu3f7Z39rHdX2UKGgGR0CbGBmhM8HOaAdN6ANoCEdAruqh99c8knV9lChoBkdAoCvBT850bWgHTegDaAhHQK7qouJ1q351fZQoaAZHQJo34VtXPqtoB03oA2gIR0Cu6qO6NEPUdX2UKGgGR0CWlDYDklu4aAdN6ANoCEdAruqkzAN5MXV9lChoBkdAoA0DjzZpSWgHTegDaAhHQK752717IDJ1fZQoaAZHQJ6vSlP8AJdoB03oA2gIR0Cu+dwnQY1pdX2UKGgGR0CgdwJCa7VbaAdN6ANoCEdArvnck8ifQXV9lChoBkdAoCfufEn9emgHTegDaAhHQK753RXOnl51fZQoaAZHQJzghlQMx49oB03oA2gIR0CvBr9BBzFNdX2UKGgGR0Ce+x+T/yXlaAdN6ANoCEdArwbAMtsen3V9lChoBkdAn+6UnXumamgHTegDaAhHQK8GwUtZmqZ1fZQoaAZHQKCGmAaNuLtoB03oA2gIR0CvBsKMvRJFdX2UKGgGR0CeSYNJvo/zaAdN5ANoCEdArxYp/EwWWXV9lChoBkdAm2WlUVBUrGgHTegDaAhHQK8WN44ZMtd1fZQoaAZHQJ0JAfNiYsxoB03oA2gIR0CvFjgeii7DdX2UKGgGR0CScixp+MIeaAdN6ANoCEdArxY402tMf3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 52980, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}