--- base_model: sentence-transformers/all-mpnet-base-v2 library_name: setfit metrics: - accuracy - precision - recall - f1 pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: chatgpt , in response to this , will propose an appropriate emoticon response for that comment as well generate the specific text of a comment reply for me to give . - text: 'text - to - speech : once chatgpt has generated a response , you will need to convert it into speech using a text - to - speech api , such as google text - to - speech or microsoft azure text - to - speech . ' - text: 'yes , i know that chatgpt said this many many times , but this is a fact that people need to eat it up and move on . ' - text: 'explanation : this makes it easier for chatgpt to understand and generate a response for each individual point . ' - text: 'chatgpt makes choices , algorithms are n''t neutral . ' inference: true model-index: - name: SetFit with sentence-transformers/all-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.75 name: Accuracy - type: precision value: 0.7666666666666666 name: Precision - type: recall value: 0.746031746031746 name: Recall - type: f1 value: 0.7488344988344989 name: F1 --- # SetFit with sentence-transformers/all-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 384 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | | | 0 | | | 2 | | ## Evaluation ### Metrics | Label | Accuracy | Precision | Recall | F1 | |:--------|:---------|:----------|:-------|:-------| | **all** | 0.75 | 0.7667 | 0.7460 | 0.7488 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("setfit_model_id") # Run inference preds = model("chatgpt makes choices , algorithms are n't neutral . ") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 20.7848 | 51 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 26 | | 1 | 27 | | 2 | 26 | ### Training Hyperparameters - batch_size: (32, 2) - num_epochs: (10, 10) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - evaluation_strategy: epoch - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0077 | 1 | 0.2555 | - | | 0.3846 | 50 | 0.2528 | - | | 0.7692 | 100 | 0.1993 | - | | 1.0 | 130 | - | 0.1527 | | 1.1538 | 150 | 0.0222 | - | | 1.5385 | 200 | 0.0023 | - | | 1.9231 | 250 | 0.0013 | - | | 2.0 | 260 | - | 0.1461 | | 2.3077 | 300 | 0.0015 | - | | 2.6923 | 350 | 0.0005 | - | | 3.0 | 390 | - | 0.1465 | | 3.0769 | 400 | 0.0003 | - | | 3.4615 | 450 | 0.0002 | - | | 3.8462 | 500 | 0.0003 | - | | 4.0 | 520 | - | 0.1353 | | 4.2308 | 550 | 0.0007 | - | | 4.6154 | 600 | 0.0002 | - | | 5.0 | 650 | 0.0011 | 0.1491 | | 5.3846 | 700 | 0.0002 | - | | 5.7692 | 750 | 0.0002 | - | | 6.0 | 780 | - | 0.1478 | | 6.1538 | 800 | 0.0002 | - | | 6.5385 | 850 | 0.0001 | - | | 6.9231 | 900 | 0.0001 | - | | 7.0 | 910 | - | 0.1472 | | 7.3077 | 950 | 0.0001 | - | | 7.6923 | 1000 | 0.0001 | - | | 8.0 | 1040 | - | 0.1461 | | 8.0769 | 1050 | 0.0001 | - | | 8.4615 | 1100 | 0.0001 | - | | 8.8462 | 1150 | 0.0001 | - | | 9.0 | 1170 | - | 0.1393 | | 9.2308 | 1200 | 0.0001 | - | | 9.6154 | 1250 | 0.0001 | - | | 10.0 | 1300 | 0.0001 | 0.1399 | ### Framework Versions - Python: 3.11.7 - SetFit: 1.1.0 - Sentence Transformers: 3.2.0 - Transformers: 4.45.2 - PyTorch: 2.4.1 - Datasets: 3.0.1 - Tokenizers: 0.20.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```