--- tags: - merge - mergekit - lazymergekit - mudler/Asinello-Minerva-3B-v0.1 - mii-llm/minerva-chat-v0.1-alpha-sft base_model: - mudler/Asinello-Minerva-3B-v0.1 - mii-llm/minerva-chat-v0.1-alpha-sft --- # M_Moe_3x3B_TIES M_Moe_3x3B_TIES is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mudler/Asinello-Minerva-3B-v0.1](https://huggingface.co/mudler/Asinello-Minerva-3B-v0.1) * [mii-llm/minerva-chat-v0.1-alpha-sft](https://huggingface.co/mii-llm/minerva-chat-v0.1-alpha-sft) ## 🧩 Configuration ```yaml models: - model: sapienzanlp/Minerva-3B-base-v1.0 # no parameters necessary for base model - model: mudler/Asinello-Minerva-3B-v0.1 parameters: density: 0.5 weight: 0.5 - model: mii-llm/minerva-chat-v0.1-alpha-sft parameters: density: 0.5 weight: 0.3 merge_method: ties base_model: sapienzanlp/Minerva-3B-base-v1.0 parameters: normalize: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "ludocomito/M_Moe_3x3B_TIES" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```