File size: 7,309 Bytes
551ffcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import torch
from torch import nn
import  torch.nn.functional as F
import numpy as np
from torchsummary import summary
from torch import optim
import copy
import dataprepare as prp
from tqdm import tqdm
from PIL import Image
from torchvision import transforms
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torchvision.transforms.functional import get_image_num_channels
import random
import wandb




class myTumorDetection(nn.Module):
    def __init__(self, params):
        super(myTumorDetection,self).__init__()

        num_channels, height, width = params['shape_in']
        initial_filters = params['initial_filters']
        num_fc1 = params['num_fc1']
        num_classes = params['num_classes']
        self.dropout_rate = params['dropout_rate']

        self.conv1 = nn.Conv2d(num_channels, 2*initial_filters, kernel_size=3)
        height ,width = findConv2dparams(height, width, self.conv1)
        self.conv2 = nn.Conv2d(2*initial_filters, 4*initial_filters, kernel_size=3)
        height, width = findConv2dparams(height, width, self.conv2)
        self.conv3 = nn.Conv2d(4*initial_filters, 8*initial_filters, kernel_size=3)
        height, width = findConv2dparams(height, width, self.conv3)
        self.conv4 = nn.Conv2d(8*initial_filters, 16*initial_filters, kernel_size=3)
        height, width = findConv2dparams(height, width, self.conv4)
        
        self.flatten = height*width*16*initial_filters

        print(self.flatten)
        self.ly1 = nn.Dropout()
        self.fc1 = nn.Linear(self.flatten, num_fc1)
        self.ly2 = nn.Dropout()
        self.fc2 = nn.Linear(num_fc1, num_classes)
        #self.fc3 = nn.Linear(50, num_classes)

    def forward(self, X):
        X = F.relu(self.conv1(X))
        X = F.max_pool2d(X,2,2)
        X = nn.BatchNorm2d(16)(X)

        X = F.relu(self.conv2(X))
        X = F.max_pool2d(X,2,2)
        X = nn.BatchNorm2d(32)(X)

        X = F.relu(self.conv3(X))
        X = F.max_pool2d(X,2,2)
        X = nn.BatchNorm2d(64)(X)

        X = F.relu(self.conv4(X))
        X = F.max_pool2d(X,2,2)
        X = nn.BatchNorm2d(128)(X)

        X = X.view(-1,self.flatten)
        X = F.relu(self.fc1(X))
        X = F.dropout(X, self.dropout_rate)

        X = F.dropout(X, self.dropout_rate)
        X = self.fc2(X)
        #X = self.fc3(X)
        return F.log_softmax(X, dim = 1)
    




def findConv2dparams(height, width, conv1, pool=2):
    
    kernel_size = conv1.kernel_size
    padding = conv1.padding
    stride = conv1.stride
    dilation = conv1.dilation

    hout = np.floor((height+ 2*padding[0]- dilation[0]*(kernel_size[0]-1)-1)/stride[0]+1)
    wout = np.floor((width+ 2*padding[1]- dilation[1]*(kernel_size[1]-1)-1)/stride[1]+1)

    if pool:
        hout /= pool
        wout /= pool
        print(hout)
        print(wout)
    return int(hout),int(wout)

def calculate_accuracy(y_pred, y):
    top_pred = y_pred.argmax(1,keepdim=True)
    correct = top_pred.eq(y.view_as(top_pred)).sum()
    acc = correct.float()/y.shape[0]
    return acc

def model_training(model, dataloader, optimizer, loss_fn, device):
    epoch_loss = 0
    epoch_acc = 0
    model.train()
    for (x,y) in tqdm(dataloader, desc = "Training", leave = False):
        x = x.to(device)
        y = y.to(device)

        optimizer.zero_grad()
        y_pred = model(x)
        loss = loss_fn(y_pred, y)
        
        loss.backward()
        optimizer.step()
        accuracy = calculate_accuracy(y_pred, y)
        
        
        epoch_acc += accuracy.item()
        epoch_loss += loss.item()

    return epoch_acc/len(dataloader), epoch_loss/len(dataloader)

def model_validation(model, dataloader, optimizer,loss_fn,device):
    epoch_acc = 0
    epoch_loss = 0
    model.eval()
    for(x,y) in tqdm(dataloader, desc = "Validation" , leave=False):
        x = x.to(device)
        y = y.to(device)

        optimizer.zero_grad()
        pred = model(x)
        print(f"Prediction for this run {pred}")
        optimizer.step()
        acc = calculate_accuracy(pred, y)
        loss = loss_fn(pred, y)
        

        epoch_acc += acc.item()
        epoch_loss += loss.item()

    return epoch_acc/len(dataloader), epoch_loss/len(dataloader)

def model_testing(model, input, loss_fn):

    test_transformations = transforms.Compose([
        transforms.Resize((256, 256)),
        transforms.ToTensor(),
    ])

    image_list = ["./selftest/Cancer (8).jpg","./selftest/Cancer (18).jpg", "./selftest/Not Cancer  (3).jpg", "./selftest/Not Cancer  (11).jpg"]
    for image in image_list:
        image = Image.open(image)
        image_resized = test_transformations(image)

        image_resized = image_resized.view(1,3,256,256)
        output = model(image_resized)
        print(f"Output {output}")
        

    #image_torch = image_torch.view(1,3,256,256)
    #output = model(image_torch)
    #image_torch = test_transformations(image_array)
    #print(f"Checking image type before model {type(image_torch)}")

    #for x,y in input:
        #print(f"Input type {type(x)}\n Input shape {x.shape}")
        #output = model(x)
    #accuracy = calculate_accuracy(output, y)


#prp.load_data('./Brain Tumor Data Set')
train_set, test_set,dev_set = prp.luismi_transformations('./brain')
print(f"Training dataset length {len(train_set)} \n Dev dataset length {len(dev_set)} \n Test dataset length {len(test_set)}")
train_loader, test_loader,dev_loader = prp.data_loaders(train_set, test_set,dev_set)


params_model={
        "shape_in": (3,256,256), 
        "initial_filters": 8,    
        "num_fc1": 100,
        "dropout_rate": 0.25,
        "num_classes": 2
        }
lr = 3e-4
epochs = 40
model = myTumorDetection(params_model)

optimizer = optim.Adam(model.parameters(), lr = lr)
loss_fn = nn.CrossEntropyLoss()
device = torch.device("cpu")
model = model.to(device)
best_valid_loss = float('inf')
lambda1 = lambda epochs: epochs/30
#lr_scheduler = optim.lr_scheduler.LambdaLR(optimizer,lambda1)

# print(optimizer.state_dict())
# for i in range(epochs):
     
#     epoch_acc, epoch_loss = model_training(model, train_loader, optimizer, loss_fn,device)
#     val_acc, val_loss = model_validation(model, dev_loader, optimizer, loss_fn,device)
#      #lr_scheduler.step()
#     print(f"Learning rate value {optimizer.state_dict()['param_groups'][0]['lr']}")

#     if val_loss < best_valid_loss:
#         best_valid_loss = val_loss
#         torch.save(model.state_dict(), 'tut2-model.pt')
#     print(f"____________________________________________________________")
#     print(f"Epoch {i}\nTrain acc {epoch_acc * 100} | Train loss {epoch_loss * 100}")
#     print(f"Epoch {i}\nVal acc {val_acc * 100} | Val loss {val_loss* 100}")


#model.load_state_dict(torch.load('tut2-model.pt'))
model_testing(model,test_loader, loss_fn)


#test_acc, test_loss = model_validation(model, test_loader, optimizer, loss_fn, device)
#print(f"Model final testing\nTest acc {test_acc * 100} | Test loss {test_loss* 100}")
#print(f"____________________________________________________________")