File size: 7,309 Bytes
551ffcd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
from torchsummary import summary
from torch import optim
import copy
import dataprepare as prp
from tqdm import tqdm
from PIL import Image
from torchvision import transforms
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torchvision.transforms.functional import get_image_num_channels
import random
import wandb
class myTumorDetection(nn.Module):
def __init__(self, params):
super(myTumorDetection,self).__init__()
num_channels, height, width = params['shape_in']
initial_filters = params['initial_filters']
num_fc1 = params['num_fc1']
num_classes = params['num_classes']
self.dropout_rate = params['dropout_rate']
self.conv1 = nn.Conv2d(num_channels, 2*initial_filters, kernel_size=3)
height ,width = findConv2dparams(height, width, self.conv1)
self.conv2 = nn.Conv2d(2*initial_filters, 4*initial_filters, kernel_size=3)
height, width = findConv2dparams(height, width, self.conv2)
self.conv3 = nn.Conv2d(4*initial_filters, 8*initial_filters, kernel_size=3)
height, width = findConv2dparams(height, width, self.conv3)
self.conv4 = nn.Conv2d(8*initial_filters, 16*initial_filters, kernel_size=3)
height, width = findConv2dparams(height, width, self.conv4)
self.flatten = height*width*16*initial_filters
print(self.flatten)
self.ly1 = nn.Dropout()
self.fc1 = nn.Linear(self.flatten, num_fc1)
self.ly2 = nn.Dropout()
self.fc2 = nn.Linear(num_fc1, num_classes)
#self.fc3 = nn.Linear(50, num_classes)
def forward(self, X):
X = F.relu(self.conv1(X))
X = F.max_pool2d(X,2,2)
X = nn.BatchNorm2d(16)(X)
X = F.relu(self.conv2(X))
X = F.max_pool2d(X,2,2)
X = nn.BatchNorm2d(32)(X)
X = F.relu(self.conv3(X))
X = F.max_pool2d(X,2,2)
X = nn.BatchNorm2d(64)(X)
X = F.relu(self.conv4(X))
X = F.max_pool2d(X,2,2)
X = nn.BatchNorm2d(128)(X)
X = X.view(-1,self.flatten)
X = F.relu(self.fc1(X))
X = F.dropout(X, self.dropout_rate)
X = F.dropout(X, self.dropout_rate)
X = self.fc2(X)
#X = self.fc3(X)
return F.log_softmax(X, dim = 1)
def findConv2dparams(height, width, conv1, pool=2):
kernel_size = conv1.kernel_size
padding = conv1.padding
stride = conv1.stride
dilation = conv1.dilation
hout = np.floor((height+ 2*padding[0]- dilation[0]*(kernel_size[0]-1)-1)/stride[0]+1)
wout = np.floor((width+ 2*padding[1]- dilation[1]*(kernel_size[1]-1)-1)/stride[1]+1)
if pool:
hout /= pool
wout /= pool
print(hout)
print(wout)
return int(hout),int(wout)
def calculate_accuracy(y_pred, y):
top_pred = y_pred.argmax(1,keepdim=True)
correct = top_pred.eq(y.view_as(top_pred)).sum()
acc = correct.float()/y.shape[0]
return acc
def model_training(model, dataloader, optimizer, loss_fn, device):
epoch_loss = 0
epoch_acc = 0
model.train()
for (x,y) in tqdm(dataloader, desc = "Training", leave = False):
x = x.to(device)
y = y.to(device)
optimizer.zero_grad()
y_pred = model(x)
loss = loss_fn(y_pred, y)
loss.backward()
optimizer.step()
accuracy = calculate_accuracy(y_pred, y)
epoch_acc += accuracy.item()
epoch_loss += loss.item()
return epoch_acc/len(dataloader), epoch_loss/len(dataloader)
def model_validation(model, dataloader, optimizer,loss_fn,device):
epoch_acc = 0
epoch_loss = 0
model.eval()
for(x,y) in tqdm(dataloader, desc = "Validation" , leave=False):
x = x.to(device)
y = y.to(device)
optimizer.zero_grad()
pred = model(x)
print(f"Prediction for this run {pred}")
optimizer.step()
acc = calculate_accuracy(pred, y)
loss = loss_fn(pred, y)
epoch_acc += acc.item()
epoch_loss += loss.item()
return epoch_acc/len(dataloader), epoch_loss/len(dataloader)
def model_testing(model, input, loss_fn):
test_transformations = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
])
image_list = ["./selftest/Cancer (8).jpg","./selftest/Cancer (18).jpg", "./selftest/Not Cancer (3).jpg", "./selftest/Not Cancer (11).jpg"]
for image in image_list:
image = Image.open(image)
image_resized = test_transformations(image)
image_resized = image_resized.view(1,3,256,256)
output = model(image_resized)
print(f"Output {output}")
#image_torch = image_torch.view(1,3,256,256)
#output = model(image_torch)
#image_torch = test_transformations(image_array)
#print(f"Checking image type before model {type(image_torch)}")
#for x,y in input:
#print(f"Input type {type(x)}\n Input shape {x.shape}")
#output = model(x)
#accuracy = calculate_accuracy(output, y)
#prp.load_data('./Brain Tumor Data Set')
train_set, test_set,dev_set = prp.luismi_transformations('./brain')
print(f"Training dataset length {len(train_set)} \n Dev dataset length {len(dev_set)} \n Test dataset length {len(test_set)}")
train_loader, test_loader,dev_loader = prp.data_loaders(train_set, test_set,dev_set)
params_model={
"shape_in": (3,256,256),
"initial_filters": 8,
"num_fc1": 100,
"dropout_rate": 0.25,
"num_classes": 2
}
lr = 3e-4
epochs = 40
model = myTumorDetection(params_model)
optimizer = optim.Adam(model.parameters(), lr = lr)
loss_fn = nn.CrossEntropyLoss()
device = torch.device("cpu")
model = model.to(device)
best_valid_loss = float('inf')
lambda1 = lambda epochs: epochs/30
#lr_scheduler = optim.lr_scheduler.LambdaLR(optimizer,lambda1)
# print(optimizer.state_dict())
# for i in range(epochs):
# epoch_acc, epoch_loss = model_training(model, train_loader, optimizer, loss_fn,device)
# val_acc, val_loss = model_validation(model, dev_loader, optimizer, loss_fn,device)
# #lr_scheduler.step()
# print(f"Learning rate value {optimizer.state_dict()['param_groups'][0]['lr']}")
# if val_loss < best_valid_loss:
# best_valid_loss = val_loss
# torch.save(model.state_dict(), 'tut2-model.pt')
# print(f"____________________________________________________________")
# print(f"Epoch {i}\nTrain acc {epoch_acc * 100} | Train loss {epoch_loss * 100}")
# print(f"Epoch {i}\nVal acc {val_acc * 100} | Val loss {val_loss* 100}")
#model.load_state_dict(torch.load('tut2-model.pt'))
model_testing(model,test_loader, loss_fn)
#test_acc, test_loss = model_validation(model, test_loader, optimizer, loss_fn, device)
#print(f"Model final testing\nTest acc {test_acc * 100} | Test loss {test_loss* 100}")
#print(f"____________________________________________________________")
|