File size: 1,983 Bytes
a9ac29c
 
 
 
e4a1dc0
 
a9ac29c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4a1dc0
a9ac29c
e4a1dc0
 
 
 
 
a9ac29c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4a1dc0
a9ac29c
 
 
 
 
 
e4a1dc0
a9ac29c
 
 
 
 
 
e4a1dc0
 
 
 
a9ac29c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
library_name: transformers
language:
- np
license: mit
base_model: Sakonii/deberta-base-nepali
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: Nepali-BERT-devangari-sentiment
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Nepali-BERT-devangari-sentiment

This model is a fine-tuned version of [Sakonii/deberta-base-nepali](https://huggingface.co/Sakonii/deberta-base-nepali) on the Custom Devangari Datasets dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6662
- Accuracy: 0.8710
- F1: 0.5130
- Precision: 0.4571
- Recall: 0.5844

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.6046        | 1.0   | 1189 | 0.5267          | 0.8167   | 0.4543 | 0.3475    | 0.6561 |
| 0.4952        | 2.0   | 2378 | 0.5396          | 0.8518   | 0.5025 | 0.4122    | 0.6435 |
| 0.412         | 3.0   | 3567 | 0.5733          | 0.8656   | 0.5098 | 0.4425    | 0.6013 |
| 0.3406        | 4.0   | 4756 | 0.6662          | 0.8710   | 0.5130 | 0.4571    | 0.5844 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1