File size: 2,048 Bytes
14543c8
 
a4630fa
14543c8
 
 
 
 
 
 
 
 
 
 
 
a4630fa
14543c8
a4630fa
 
14543c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4630fa
 
14543c8
 
 
a4630fa
14543c8
 
 
a4630fa
 
 
 
 
 
 
 
 
 
 
 
14543c8
 
 
 
a4630fa
14543c8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: mit
base_model: indobenchmark/indobert-base-p1
tags:
- generated_from_trainer
model-index:
- name: text-classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# text-classification

This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4590
- Balanced Accuracy: 0.6868

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Balanced Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|
| No log        | 1.0   | 125  | 0.4590          | 0.6868            |
| No log        | 2.0   | 250  | 0.5104          | 0.6470            |
| No log        | 3.0   | 375  | 0.5941          | 0.6448            |
| 0.3146        | 4.0   | 500  | 0.5873          | 0.7828            |
| 0.3146        | 5.0   | 625  | 0.6645          | 0.8005            |
| 0.3146        | 6.0   | 750  | 0.6635          | 0.8110            |
| 0.3146        | 7.0   | 875  | 0.6684          | 0.7801            |
| 0.0956        | 8.0   | 1000 | 0.8031          | 0.7786            |
| 0.0956        | 9.0   | 1125 | 0.7523          | 0.7827            |
| 0.0956        | 10.0  | 1250 | 0.7878          | 0.7715            |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1