magicsquares137 commited on
Commit
a66f756
·
verified ·
1 Parent(s): 623ccbd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -16
README.md CHANGED
@@ -14,14 +14,14 @@ tags:
14
  - fine-tuned
15
  base_model: microsoft/phi-3-mini-4k-instruct
16
  model-index:
17
- - name: phi3-uncensored-chat
18
  results: []
19
  ---
20
 
21
- # phi3-uncensored-chat
22
- ![Header Image](https://huggingface.co/magicsquares137/phi3-uncensored-chat/resolve/main/00380-3290958654.png)
23
 
24
- This model is a fine-tuned version of [microsoft/phi-3-mini-4k-instruct](https://huggingface.co/microsoft/phi-3-mini-4k-instruct) optimized for roleplaying conversations with a variety of character personas. The model speaks in a conversational format. Please not, prompt template guidelines are extremely important in getting usable output.
25
 
26
  ## Example Conversations
27
 
@@ -93,9 +93,9 @@ import torch
93
  from transformers import AutoModelForCausalLM, AutoTokenizer
94
 
95
  # Load in half precision for best balance of performance and quality
96
- tokenizer = AutoTokenizer.from_pretrained("magicsquares137/phi3-uncensored-chat")
97
  model = AutoModelForCausalLM.from_pretrained(
98
- "magicsquares137/phi3-uncensored-chat",
99
  torch_dtype=torch.float16,
100
  device_map="auto"
101
  )
@@ -113,9 +113,9 @@ quantization_config = BitsAndBytesConfig(
113
  )
114
 
115
  # Load in 8-bit
116
- tokenizer = AutoTokenizer.from_pretrained("magicsquares137/phi3-uncensored-chat")
117
  model = AutoModelForCausalLM.from_pretrained(
118
- "magicsquares137/phi3-uncensored-chat",
119
  quantization_config=quantization_config,
120
  device_map="auto"
121
  )
@@ -133,9 +133,9 @@ quantization_config = BitsAndBytesConfig(
133
  )
134
 
135
  # Load in 4-bit
136
- tokenizer = AutoTokenizer.from_pretrained("magicsquares137/phi3-uncensored-chat")
137
  model = AutoModelForCausalLM.from_pretrained(
138
- "magicsquares137/phi3-uncensored-chat",
139
  quantization_config=quantization_config,
140
  device_map="auto"
141
  )
@@ -144,7 +144,7 @@ model = AutoModelForCausalLM.from_pretrained(
144
  **For CPU-only inference** (much slower but works on any system):
145
  ```python
146
  model = AutoModelForCausalLM.from_pretrained(
147
- "magicsquares137/phi3-uncensored-chat",
148
  device_map="cpu"
149
  )
150
  ```
@@ -157,7 +157,7 @@ Note: Lower precision (8-bit and 4-bit) may result in slightly reduced output qu
157
  The model has been optimized to maintain persona consistency while capable of adopting different characters. It excels at creative, character-driven conversations and exhibits a high degree of adaptability to different personality traits provided in the system prompt.
158
 
159
  ### Training Data
160
- We are unable to open source the dataset at this time, due to its use for proprietary internal luvgpt development. Initial conversations were generated by open source large language models given specific generation instructions and curated by a judge model.
161
 
162
  - **Dataset Size**: ~13k high-quality examples (curated from 50k initial conversations)
163
  - **Data Format**: JSONL with each entry containing a messages array with system, user, and assistant roles
@@ -168,9 +168,9 @@ We are unable to open source the dataset at this time, due to its use for propri
168
 
169
  Training metrics show consistent improvement throughout the training process:
170
 
171
- ![Training Loss](https://huggingface.co/magicsquares137/phi3-uncensored-chat/resolve/main/W%26B%20Chart%203_18_2025%2C%203_18_10%20PM.png)
172
 
173
- ![Token Accuracy](https://huggingface.co/magicsquares137/phi3-uncensored-chat/resolve/main/W%26B%20Chart%203_18_2025%2C%203_18_35%20PM.png)
174
 
175
  - **Token Accuracy**: Improved from ~0.48 to ~0.73
176
  - **Training Loss**: Decreased from ~2.2 to ~1.05
@@ -200,7 +200,7 @@ import torch
200
  from transformers import AutoModelForCausalLM, AutoTokenizer
201
 
202
  # Load model and tokenizer
203
- model_name = "luvgpt/phi3-uncensored-chat"
204
  tokenizer = AutoTokenizer.from_pretrained(model_name)
205
  model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
206
 
@@ -241,7 +241,7 @@ import torch
241
  from transformers import AutoModelForCausalLM, AutoTokenizer
242
 
243
  class CharacterChat:
244
- def __init__(self, model_path="luvgpt/phi3-uncensored-chat", persona=None):
245
  print(f"Loading model from {model_path}...")
246
  self.tokenizer = AutoTokenizer.from_pretrained(model_path)
247
  self.model = AutoModelForCausalLM.from_pretrained(
 
14
  - fine-tuned
15
  base_model: microsoft/phi-3-mini-4k-instruct
16
  model-index:
17
+ - name: luvai-phi3
18
  results: []
19
  ---
20
 
21
+ # luvai-phi3
22
+ ![Header Image](https://huggingface.co/luvGPT/luvai-phi3/resolve/main/00380-3290958654.png)
23
 
24
+ This model is a fine-tuned version of [microsoft/phi-3-mini-4k-instruct](https://huggingface.co/microsoft/phi-3-mini-4k-instruct) optimized for roleplaying conversations with a variety of character personas. The model speaks in a conversational format. Please note, prompt template guidelines are extremely important in getting usable output.
25
 
26
  ## Example Conversations
27
 
 
93
  from transformers import AutoModelForCausalLM, AutoTokenizer
94
 
95
  # Load in half precision for best balance of performance and quality
96
+ tokenizer = AutoTokenizer.from_pretrained("luvGPT/luvai-phi3")
97
  model = AutoModelForCausalLM.from_pretrained(
98
+ "luvGPT/luvai-phi3",
99
  torch_dtype=torch.float16,
100
  device_map="auto"
101
  )
 
113
  )
114
 
115
  # Load in 8-bit
116
+ tokenizer = AutoTokenizer.from_pretrained("luvGPT/luvai-phi3")
117
  model = AutoModelForCausalLM.from_pretrained(
118
+ "luvGPT/luvai-phi3",
119
  quantization_config=quantization_config,
120
  device_map="auto"
121
  )
 
133
  )
134
 
135
  # Load in 4-bit
136
+ tokenizer = AutoTokenizer.from_pretrained("luvGPT/luvai-phi3")
137
  model = AutoModelForCausalLM.from_pretrained(
138
+ "luvGPT/luvai-phi3",
139
  quantization_config=quantization_config,
140
  device_map="auto"
141
  )
 
144
  **For CPU-only inference** (much slower but works on any system):
145
  ```python
146
  model = AutoModelForCausalLM.from_pretrained(
147
+ "luvGPT/luvai-phi3",
148
  device_map="cpu"
149
  )
150
  ```
 
157
  The model has been optimized to maintain persona consistency while capable of adopting different characters. It excels at creative, character-driven conversations and exhibits a high degree of adaptability to different personality traits provided in the system prompt.
158
 
159
  ### Training Data
160
+ We are unable to open source the dataset at this time, due to its use for proprietary internal luvGPT development. Initial conversations were generated by open source large language models given specific generation instructions and curated by a judge model.
161
 
162
  - **Dataset Size**: ~13k high-quality examples (curated from 50k initial conversations)
163
  - **Data Format**: JSONL with each entry containing a messages array with system, user, and assistant roles
 
168
 
169
  Training metrics show consistent improvement throughout the training process:
170
 
171
+ ![Training Loss](https://huggingface.co/luvGPT/luvai-phi3/resolve/main/W%26B%20Chart%203_18_2025%2C%203_18_10%20PM.png)
172
 
173
+ ![Token Accuracy](https://huggingface.co/luvGPT/luvai-phi3/resolve/main/W%26B%20Chart%203_18_2025%2C%203_18_35%20PM.png)
174
 
175
  - **Token Accuracy**: Improved from ~0.48 to ~0.73
176
  - **Training Loss**: Decreased from ~2.2 to ~1.05
 
200
  from transformers import AutoModelForCausalLM, AutoTokenizer
201
 
202
  # Load model and tokenizer
203
+ model_name = "luvGPT/luvai-phi3"
204
  tokenizer = AutoTokenizer.from_pretrained(model_name)
205
  model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
206
 
 
241
  from transformers import AutoModelForCausalLM, AutoTokenizer
242
 
243
  class CharacterChat:
244
+ def __init__(self, model_path="luvGPT/luvai-phi3", persona=None):
245
  print(f"Loading model from {model_path}...")
246
  self.tokenizer = AutoTokenizer.from_pretrained(model_path)
247
  self.model = AutoModelForCausalLM.from_pretrained(