Update README.md
Browse files
README.md
CHANGED
|
@@ -3,39 +3,39 @@ base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
|
|
| 3 |
library_name: transformers
|
| 4 |
license: mit
|
| 5 |
language:
|
| 6 |
-
- en
|
| 7 |
-
- pt
|
| 8 |
metrics:
|
| 9 |
-
- accuracy
|
| 10 |
-
new_version: lambdaindie/lambdai
|
| 11 |
pipeline_tag: text-generation
|
| 12 |
tags:
|
| 13 |
-
-
|
| 14 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
---
|
| 16 |
|
| 17 |
-
|
| 18 |
|
| 19 |
-
|
| 20 |
|
| 21 |
-
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
Tokens: até 512 por amostra
|
| 28 |
-
|
| 29 |
-
Batch: 20 por device
|
| 30 |
-
|
| 31 |
-
Epochs: 3
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
---
|
| 36 |
-
|
| 37 |
-
Exemplo de uso (Python)
|
| 38 |
|
|
|
|
| 39 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 40 |
|
| 41 |
model = AutoModelForCausalLM.from_pretrained("lambdaindie/lambdai")
|
|
@@ -43,16 +43,20 @@ tokenizer = AutoTokenizer.from_pretrained("lambdaindie/lambdai")
|
|
| 43 |
|
| 44 |
input_text = "Problema: Prove que 17 é um número primo."
|
| 45 |
inputs = tokenizer(input_text, return_tensors="pt")
|
|
|
|
| 46 |
output = model.generate(**inputs, max_new_tokens=100)
|
|
|
|
| 47 |
|
| 48 |
-
|
| 49 |
|
|
|
|
| 50 |
|
| 51 |
-
|
| 52 |
|
| 53 |
-
Sobre a Lambda
|
| 54 |
|
| 55 |
-
|
|
|
|
|
|
|
| 56 |
|
|
|
|
| 57 |
|
| 58 |
-
---
|
|
|
|
| 3 |
library_name: transformers
|
| 4 |
license: mit
|
| 5 |
language:
|
| 6 |
+
- en
|
| 7 |
+
- pt
|
| 8 |
metrics:
|
| 9 |
+
- accuracy
|
|
|
|
| 10 |
pipeline_tag: text-generation
|
| 11 |
tags:
|
| 12 |
+
- education
|
| 13 |
+
- logic
|
| 14 |
+
- math
|
| 15 |
+
- low-resource
|
| 16 |
+
- transformers
|
| 17 |
+
- open-source
|
| 18 |
+
- causal-lm
|
| 19 |
+
- lambdaindie
|
| 20 |
---
|
| 21 |
|
| 22 |
+
# lambdAI — Lightweight Math & Logic Reasoning Model
|
| 23 |
|
| 24 |
+
**lambdAI** is a compact, fine-tuned language model built on top of `TinyLlama-1.1B-Chat-v1.0`, designed for educational reasoning tasks in both Portuguese and English. It focuses on logic, number theory, and mathematics, delivering fast performance with minimal computational requirements.
|
| 25 |
|
| 26 |
+
## Model Architecture
|
| 27 |
|
| 28 |
+
- **Base Model**: TinyLlama-1.1B-Chat
|
| 29 |
+
- **Fine-Tuning Strategy**: LoRA (applied to `q_proj` and `v_proj`)
|
| 30 |
+
- **Quantization**: 8-bit (NF4 via `bnb_config`)
|
| 31 |
+
- **Dataset**: [`HuggingFaceH4/MATH`](https://huggingface.co/datasets/HuggingFaceH4/MATH) — subset: `number_theory`
|
| 32 |
+
- **Max Tokens per Sample**: 512
|
| 33 |
+
- **Batch Size**: 20 per device
|
| 34 |
+
- **Epochs**: 3
|
| 35 |
|
| 36 |
+
## Example Usage (Python)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
```python
|
| 39 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 40 |
|
| 41 |
model = AutoModelForCausalLM.from_pretrained("lambdaindie/lambdai")
|
|
|
|
| 43 |
|
| 44 |
input_text = "Problema: Prove que 17 é um número primo."
|
| 45 |
inputs = tokenizer(input_text, return_tensors="pt")
|
| 46 |
+
|
| 47 |
output = model.generate(**inputs, max_new_tokens=100)
|
| 48 |
+
print(tokenizer.decode(output[0], skip_special_tokens=True))```
|
| 49 |
|
| 50 |
+
About Lambda
|
| 51 |
|
| 52 |
+
Lambda is an indie tech startup founded by Marius Jabami in Angola, focused on AI-driven educational tools, automation, and lightweight software solutions. The lambdAI model is the first release in a planned series of educational LLMs optimized for reasoning, logic, and low-resource deployment.
|
| 53 |
|
| 54 |
+
Stay updated on the project at lambdaindie.github.io and huggingface.co/lambdaindie.
|
| 55 |
|
|
|
|
| 56 |
|
| 57 |
+
---
|
| 58 |
+
|
| 59 |
+
Developed with care by Marius Jabami — Powered by ambition and open source.
|
| 60 |
|
| 61 |
+
---
|
| 62 |
|
|
|